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1 Introduction

Pharmacokinetic (PK) models, especially physiologically based pharmacokinetic (PBPK)

models, are mathematical models for mechanisms taking place within physiological systems

that have emerged as important tools for human health risk assessment. These models have

several potential uses, including serving as the basis for extrapolation from animals to humans
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and from high to low doses and for improving the characterization of dose-adverse response

relationships. The productive application of these models for these purposes demands that

sources of information, including historical and experimental data, be exploited appropriately

and requires that the variability and uncertainty involved in fitting these models to such data

and then using them to develop extrapolations and risk estimates and to carry out other

analyses be taken into adequate account. Specifically, policy recommendations based on

these models must acknowledge the inherent variability in the populations for which the

results of these analyses are intended and characterize faithfully the uncertainty associated

with the analyses themselves.

These considerations thus require that mathematical PK and PBPK models be embedded

in a statistical framework that provides the formal foundation for representing the relevant

variability and uncertainty and hence for integrating the effects thereof into the risk as-

sessment process when using these models. The broad goal of this document is to give an

introduction to the basic statistical model framework into which PK models must be placed

that acknowledges the sources of variability that must be considered and to show how the

statistical model provides the springboard to methods for estimation of PK parameters and

other quantities of interest in the model and to assessment of the inherent uncertainties in-

volved in such estimation. We do not attempt to cover all relevant aspects of the application

of PK models in the risk assessment context, nor do we provide a rigorous account of the for-

mulation of PBPK models and their value in facilitating extrapolations and other analyses.

Rather, we focus specifically on the basic statistical modeling and inferential considerations

that must be appreciated.

We recognize that the backgrounds of readers may vary; thus, we have tried to achieve a

balance between presenting faithfully some of the technical aspects where this is warranted

3



while making the conceptual and practical aspects accessible to readers without an extensive

background in statistics. To assist readers with different backgrounds and expectations with

navigation of the content at an appropriate level, the narrative provides frequent guidance

on sections that may be skipped or skimmed by readers not wishing to delve into the some of

the more technical aspects. Sections that are more technical are marked with an asterisk (*).

Some readers may find it useful to skip these sections on an initial read and then approach

them on subsequent review.

An outline of the organization of the material is as follows. In Section 2, we briefly review

PK modeling in the traditional context of the study of pharmaceuticals and PBPK modeling

in the setting of the study of potentially hazardous agents. Readers very familiar with such

mechanistic modeling of physiological systems may wish to skip this section and proceed

directly to Section 3. All readers may wish to review the PK/PBPK models presented in

this section and in Figure 2, as they are used for illustration in subsequent sections.

To set the stage for introduction of the statistical framework, in Section 3 we discuss the

notion of “population pharmacokinetic analysis.” Readers well-versed in the principles and

objectives of population analysis may wish to move directly to Section 4.

Section 4 describes the formal statistical model in which PK models must be embedded

to carry out such “population” analyses, which involves a “hierarchy” that makes charac-

terization of the sources of variability that must be considered transparent. This model is

the essential element underlying these analyses, and all readers should cover at the least the

less-technical subsections of Section 4 (not marked by asterisks).

Section 5 reviews methods that have been proposed historically and more recently to fit

these models, i.e., estimate quantities of interest associated with them and provide accom-

panying estimates of uncertainty of estimation. An overview of the spirit of the methods is
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provided at the outset of this section, followed by more technical accounts of the underpin-

nings of each. All readers should read the subsections of Section 5 without asterisks.

Finally, in Section 6, we discuss further analyses using PBPK models that may be based

on and possible extensions of the framework without dwelling on technical considerations.

2 Pharmacokinetic Models

Readers familiar with pharmacokinetic modeling may wish to review models (1) and (3) on

pages 7 and 10, respectively, and then proceed to Section 3.

Pharmacokinetics (PK) is the study of the time course and fate of the parent or metabolite

concentrations of an agent (chemical, pharmaceutical, biologic) within a biological system

(human, animal). Concentrations over time are determined by the rate and extent of the

processes of absorption, distribution, metabolism, and excretion (ADME), where the term

elimination usually refers to the combined effects of metabolism and excretion of the parent

agent; Rowland and Tozer (1995) provide a comprehensive review of the basic concepts.

Of central interest is to characterize the ADME mechanisms that govern achieved con-

centrations over time. In the context of PK for pharmaceutical agents, understanding the

nature of drug absorption, distribution, and elimination, both for specific individuals and

across the population of individuals likely to receive the drug, is critical for development of

effective dosing regimens that can achieve concentrations of a desired duration in a target

range of therapeutic benefit. See Giltinan (2006) for an excellent review of considerations

involved. For purposes of risk assessment, the goals are similar; understanding the ADME

processes underlying concentrations of a potentially hazardous substance in different parts

of the body, such as rates of its metabolism, for individuals and the population is important

in its own right and for its relevance to further risk analyses, discussed shortly.
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A standard approach to describing PK behavior is to represent the body (animal, human)

by a series of compartments. Under a specified route of administration (of drug) or exposure

(of hazardous agent), the compartmental representation leads to a system of differential

equations in terms of parameters related to the ADME processes the describe mathematically

the instantaneous rates of change of the amounts or concentrations of agent residing in

each compartment based on assumptions on how the agent moves within and among the

compartments. The solution of the system provides a formal mathematical description of the

amounts or concentrations in the compartments at any time as a function of the parameters.

A classic text on compartmental modeling is Gibaldi and Perrier (1982).

Ideally, the compartments in the model would represent real, identifiable components

of the body. The models used in the study of PK of pharmaceutical agents, however, are

typically gross simplifications of the true physiology and have thus been referred to as “em-

pirical” models. Figure 1 shows a common model for the PK of an orally-administered drug,

the one-compartment model with first-order absorption and elimination characteristics; here,

the body is represented as a single “blood” compartment. At time t = 0, an oral dose D

is introduced instantaneously into a hypothetical “absorption depot” (the gut) where the

amount present is Aa(t) at time t. Here, D represents the dose delivered into the system.

Drug transfers into the “blood” compartment at fractional rate ka and is eliminated at frac-

tional rate ke, where A(t) is the amount of drug present in the compartment at time t,

assumed to be perfectly mixed. Letting B be the bioavailability of the drug, the resulting

linear differential equations are easily specified as

dA

dt
= kaAa − keA, A(0) = 0,

dAa

dt
= −kaAa, Aa(0) = BD,

(1)
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and may be solved analytically for A(t), leading to an expression for the concentration C(t)

at time t in the “blood” compartment given by

C(t) =
A(t)

V
=

kaDB

V (ka − ke)
{exp(−ket) − exp(−kat)}, ke = Cl/V, (2)

where V is the hypothetical volume required to account for all drug in the system; and Cl

is drug clearance, the volume of drug cleared from the system per unit time. An expression

for the concentration in the depot, Ca(t), may also be derived. In analyses using (1)–(2)

based on data on drug concentrations measured in the blood compartment only, B cannot be

determined; here, it is standard to set it equal to a known constant determined from other

information or to 1 in the absence thereof. Adopting this convention, from (2), concentrations

of the drug in blood over time are dictated by the three parameters (ka, Cl, V ). We use the

term “parameter” here to refer to quantities that govern a system but may be unknown

(and whose values may be estimated from data); see Section 4.1 for more. These parameters

all have meaningful interpretations, although they do not correspond precisely to specific

physiological phenomena. It should be clear from (2) that, given the values of (ka, Cl, V )

for a specific individual and belief in the model, one can determine the concentration of

drug at any time t following a dose of any magnitude D, even if the individual has never

been administered this dose. It is this feature that enables pharmacokineticists to predict

the time course of concentrations under different dosing regimens and thereby formulate

regimens that achieve concentrations in a desired range.

It is important to recognize that (1)–(2) is a hypothesized mathematical description of

the processes taking place within a single individual, and thus (ka, Cl, V ) govern the time

course of concentrations that would be achieved for this individual only. Description of how

the ADME processes represented by these parameters occur across the population is via a
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statistical model, as discussed in subsequent sections.

Although models like (1)–(2) are grossly simplistic, the resulting descriptions of con-

centrations they yield and the basic information on ADME they embody nonetheless have

been used quite successfully in drug development and evaluation. In the risk assessment

arena, however, such simplified models do not facilitate many of the scientific objectives.

Indeed, although the PK of pharmaceutical agents is relatively straightforward to study in

the population of humans for which they are intended, PK studies of hazardous chemicals

in humans are much more difficult to undertake, and, accordingly, studies in animals, such

as rodents, are often more feasible, although human studies have been conducted (e.g. Bois

et al., 1996; Gelman et al., 1996; Jonsson, Bois, and Johanson, 2001; Jonsson and Johanson,

2001; Mezzetti et al., 2003). If data are available for risk assessment only from animal exper-

iments where the animals may have been subject to high exposure levels of the agent, their

relevance to humans is predicated on the ability to make extrapolations, both from animal

to human and from the high exposure levels in animal experiments to the lower levels likely

to be encountered by humans, in regard to the concentrations of agent and its metabolites

that may be achieved not only in the blood but in other parts of the body. In addition,

in both animals and humans, the relationship between potentially toxic responses and the

concentrations of toxic agent actually delivered to certain target tissues, often referred to

as the “dose metric,” rather than the administered dose or exposure, is likely to be a more

valuable tool for understanding how the agent plays a role in adverse outcomes.

PBPK models have become an important tool for these problems; see Bailer and Dankovic

(1997) for an excellent introduction. Relative to the simplistic PK models usually used for

drugs, PBPK models attempt to provide a more “realistic” description of the body in terms

of compartments representing identifiable physiological entities such as tissues or collections
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of tissues and specific organs. The compartments and transfer among them are character-

ized by parameters denoting volumes, partition coefficients, blood flow and ventilation rates,

metabolism rates, and so on, that lead to a formal mathematical system of equations. Fig-

ure 2 shows a schematic of a common PBPK model for an agent such as a volatile organic

compound for which exposure is through the respiratory tract. The model involves four pri-

mary compartments representing well-perfused tissues; poorly-perfused tissues; fat tissues;

and the liver, the site of metabolism of the agent, as well as the respiratory tract, which

serves as an “exchange depot” compartment. In Figure 2, the parameters Fs are blood flow

rates, Ps/blood are tissue/blood partition coefficients, Vs are volumes, s = wp, pp, fat, liv cor-

responding to the well-perfused, poorly-perfused, fat tissues and liver compartments; Vmax

and Km are the maximum rate of metabolism and the Michaelis constant for the metabolism

process in the liver; Pblood/air is the blood/air partition coefficient; Falv is the aveolar flow

rate; and Fcard is the total cardiac blood flow rate, where the ventilation-perfusion ratio is

often defined as V PR = Falv/Fcard. The Cs are concentrations associated with the indicated

compartmental sites indexed by s, including not only wp, pp, fat, and liv but also in inhaled

and exhaled air and venous and arterial blood. Given a known exposure concentration (in-

haled) and standard assumptions (e.g., flow-limited distribution, well-mixed compartments,

instantaneous equilibrium between aveolar air, venous and arterial blood, etc.), the model

implies that compartment-specific concentrations at time t are determined by determined by

a system of equations

Cart =
FcardCven + FalvCinh

Fcard + Falv/Pblood/air

, Cven =
∑

s

FsCs/Fcard, Cexh = (1 − δ)
Cart

Pblood/air

+ δCinh

dCs

dt
=

Fs

Vs

(
Cart −

Cs

Ps/blood

)
, s = wp, pp, fat

dCliv

dt
=

Fliv

Vliv

(
Cart −

Cliv

Pliv/blood

)
− Rliv (s = liv), Rliv =

VmaxCliv

Vliv(Km + Cliv)
,

(3)
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where δ is the assumed proportion of physiological dead space. Because of the Michaelis-

Menten term for metabolic clearance in the liver, the system of differential equations in

(3) is nonlinear. Hence, unlike the simple system (1), analytical solution of (3) to yield

explicit expressions for the compartment-specific concentrations at time t is not possible,

and for given parameter values must be carried out numerically using standard techniques

for forward solution of differential equations (e.g., Gear, 1971).

In (3) and Figure 2, then, the compartment-specific concentrations of the agent present

in the individual at any time t are governed by the flow rate (F , V PR), volume (V ),

partition coefficient (P ), and metabolic (Vmax, Km) parameters. Analogous to (1), given

the values of these parameters corresponding to a particular individual, the concentration in

any compartment at any time can be predicted for a given exposure setting/pattern to which

that individual might be exposed. Again, we emphasize that model (3) is a hypothesized

mathematical characterization for the PK processes within a single individual, so that the

values of the parameters in (3) dictate concentrations for that individual only.

In the sequel, we use model (3) as a concrete basis with which to illustrate various issues

associated with statistical modeling and analysis. However, the principles we demonstrate

via this model apply in broad generality to any PBPK model, so should not be construed as

relevant only to models similar to (3).

Identification of a suitable PK/PBPK model for a given application, e.g., choosing the

number of compartments, must be based on understanding of the biological mechanisms

thought to govern PK and the extent to which the model produces predicted concentration-

time profiles similar to those actually observed on exposed individuals. A discussion of such

PK model specification is beyond our scope here. In Sections 3–5, we assume that the

analyst has a particular PK/PBPK model in mind, and turn to issues relevant to applying
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that model to data and drawing inferences from it. Methods for doing so have been in place

since the 1980s in the context of mostly empirical PK models and pharmaceuticals, and these

same approaches are applicable to PBPK models. However, PBPK models are more complex

and generally have a significantly larger number of parameters than do traditional empirical

models, which introduces complications for statistical modeling and analysis, discussed later.

3 Population Pharmacokinetics

Readers familiar with the concepts and principles of population analysis may wish to proceed

to Section 4.

Both simple empirical PK models like (1) and more complex PBPK models like (3) are

deterministic mathematical models for the PK behavior of a single individual. One may be

willing to believe that a particular such model is capable of describing the disposition of

an agent for any individual in a population of interest. However, the values of most of the

PK parameters in the model (e.g., flow rates, metabolic rates, compartmental volumes, etc.)

for any specific individual, or indeed, for all individuals in the population, are not known

in general. To address scientific objectives like those above, the values of the parameters

or, more importantly, appropriate quantities related to them relevant to the objectives,

discussed below, must be deduced indirectly from data. Before we may discuss estimation

methods for this purpose, we must first clarify precisely the focus of such estimation efforts.

The perspective of population pharmacokinetic modeling and analysis, first introduced in

the context of the study of pharmaceutical agents (Sheiner, Rosenberg, and Melmon, 1972;

Sheiner, Rosenberg, and Marathe, 1977; Beal and Sheiner, 1982; Sheiner and Ludden, 1992)

provides this clarification and is equally relevant to the implementation of PBPK models for

risk assessment (Bois et al., 1996; Jonsson and Johanson, 2001ab; Jonsson et al., 2001).
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Population PK modeling and analysis takes the view that scientific interest focuses pri-

marily on how mechanisms underlying PK behavior of individuals take place overall in the

population (rather than in any one specific individual). More precisely, as these mechanisms

are represented explicitly for each individual in the population by his/her parameters in the

chosen PK model, this amounts to interest in how the values of the parameters occur across

the entire population and in particular how they vary across the population. In the context of

pharmaceuticals, this perspective arises in part from the need to set dosing recommendations

for a population. Because an individual’s parameters dictate achieved drug concentrations

that are assumed associated with therapeutic effect, variability in them across individuals

may translate into variability in concentrations and hence in effect. If this variability is large,

devising broadly applicable recommendations that yield satisfactory therapeutic benefit to

the majority of individuals may be difficult. Hence, understanding this variability is criti-

cal. Likewise, in a risk assessment context, setting policy requires an understanding of the

extent to which individuals in the population vary in metabolizing toxic compounds and in

the concentrations they may achieve in target tissues, which are in turn related to adverse

response; we discuss this further in Section 6. One may also be interested in specific individ-

uals, and this is also accommodated by the population perspective; however, the view is that

the broader scientific questions relevant to policymaking naturally involve understanding of

variability in the population and hence require consideration of the population as a whole.

It is well-established that individuals from diverse populations such as human populations

can vary considerably in their underlying ADME mechanisms and thus in the values of the

parameters in the model. Figure 3, from a human PK study of the drug theophylline given

orally in the same dose to all subjects, provides a simple illustration: although the drug

concentration-time profiles exhibit a shape consistent with (2) for each subject, suggesting
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that this model provides a good description for all, the specific form varies from subject to

subject, which may be attributed to variability in the values of (ka, Cl, V ) across subjects.

Thus, population PK modeling and analysis involves specifying a suitable (statistical)

framework in which variability in PK model parameters across the population of interest

may be represented and estimated based on observable data from multiple individuals. As

we formalize in the next section, the focus of estimation is thus on quantities that describe

the distribution of PK parameters across the population; these quantities are referred to

as population parameters. For example, the mean and variance of rate of metabolism Vmax

in the population are examples of such population parameters, where the variance is the

population parameter explicitly quantifying how Vmax values vary across individuals, and

the mean quantifies the average or “typical” value of Vmax in the population about which

values vary. PK parameters corresponding to specific individuals may also be estimated;

however, it is the population parameters that are most relevant to the scientific objectives.

The population approach may be further refined. Some of the population variability may

in fact be attributed to systematic associations among parameter values and known char-

acteristics of individuals, such as gender, ethnicity, health status, genotypic information,

etc. We cite a specific example in the context of a toxicokinetic study in Section 4.6. In

population PK studies of drugs, where the number of individuals may be large (hundreds),

population analysis may involve the additional step of trying to estimate quantities that

describe such associations (e.g., Maitre et al., 1992; Mandema et al., 1992). If some of the

population variability in parameters (and hence achieved concentrations) can be linked to

known attributes, targeted dosing recommendations taking these features into account may

be developed, improving outcomes. Ideally, a similar perspective would be critical for risk

assessment; however, studies involving sufficient numbers of human subjects to identify real-
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istically true such associations are more problematic to carry out with hazardous agents; see

Mezzetti et al. (2003) for an example of a toxicokinetic study involving over 100 subjects for

which this was attempted in a population analysis. In our formal description of the statisti-

cal framework for population analysis in the next section, we thus mention the extension to

this case briefly.

4 Hierarchical Statistical Model

Intuitively, learning about how PK parameter values vary across individuals and more gen-

erally how they are distributed in the population requires concentration data over time

collected from each of a sample of individuals from the population. Thus, population anal-

ysis is usually predicated on the availability of such data, and the statistical framework is

described in terms of them. We now provide a formal, careful description of these data and

the basic model framework in the context of a single, typical experimental PBPK study. As

we discuss later, even if data of the form described below are not available, the model still

provides a conceptual framework for thinking about how data in other forms might arise.

All readers should read Sections 4.1, 4.2, 4.4, 4.6, 4.5, and 4.7. Readers desiring a more

technical description of some aspects of the statistical model should also read Section 4.3.

Description of the model and its subsequent use requires definition of a good deal of

notation. For convenience, Table 1 provides a summary of the various symbols defined in

the sequel and their interpretation.

4.1 Basic Set-Up and Model

Suppose the study involves N individuals drawn from a population of interest, indexed by i.

In Section 6, we discuss extensions of the basic model to more complicated data structures.
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Each individual i is exposed to the study agent at a known level by a known route of

exposure. For example, each individual might be placed in an inhalation chamber in which

the concentration of agent is set at a particular level (10 ppm benzene, say) for a known

duration (4 hours, say), so that Cinh in (3) is (ideally) equal to the exposure level during the

time spent in the chamber and zero after exit from the chamber. We denote all information

on the exposure level and duration undergone by individual i as E i. Suppose that the analyst

has in mind a particular PBPK model to be applied to the data.

On each individual i, concentration measurements may be taken on what correspond to

one or more of the compartment-specific concentrations C involved in the PBPK model at

ni known time points, denoted as tij, where j = 1, . . . , ni indexes the time points, and time

may be scaled so that time 0 represents a milestone such as the beginning of the exposure or

measurement period. For example, concentrations in exhaled air and venous blood [Cexh, Cven

in (3)] might be measured on each individual at a few times during exposure and then over the

next few days or week, so that ti1, ti2, . . . , tini
correspond to the ni ordered measurement times

for individual i, with time 0 representing time of exposure initiation. Assume c compartment-

specific concentrations are sampled on all individuals (so c = 2 in our example above),

where c ≤ the total number of compartment-specific concentrations involved in the PBPK

model. Let Yijk be the kth compartment-specific concentration measured among the total of c

measured in the study, k = 1, . . . , c, on individual i at time tij. Collecting all c concentration

measurements at time tij into a vector Y ij = (Yij1, Yij2, . . . , Yijc)
′ of size (c × 1), we may

summarize all concentration measurements taken on individual i over time in the study

succinctly as Y i = (Y ′

i1, . . . ,Y
′

ini
)′, which is of length cni. The numbers and values of the

time points may be different for different individuals and for different compartment-specific

concentrations k on the same individual; see Section 6. We consider the case of “common”
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measurement times for all c concentrations for simplicity, so that the presentation is parallel

to that in the traditional population PK literature.

In addition to the concentration measurements, physiological measurements may be

recorded on each individual, e.g., body weight, height, blood/air partition coefficient, fat free

body mass, and so on; although these are often referred to as “physiological parameters,”

we call them measurements to distinguish them from other PK parameters and population

parameters defined shortly, so that, following statistical modeling convention, we reserve

use of the term “parameter” to denote an unknown quantity that might be estimated from

data. For individual i, we denote the collection of these as φi. Some of these may be used

to calculate numerical values for some parameters in the PBPK model for each individual,

e.g., Vfat,i, the value of Vfat in (3) for individual i, which may then be taken as known. They

may also be used to scale some of the other PK parameters that are potentially unknown,

so as to take into account known physiological dependencies between them and these PK

parameters. For example, volumes such as Vwp may be reexpressed in (3) as fractions of lean

body weight, and other parameters may be expressed in terms of physiological measurements

and other (unknown) model parameters. There may also be a need to transform some pa-

rameters so that they obey known constraints; e.g., fractional blood flow rates must sum to

1. We denote the potentially unknown PK parameters for individual i in the PBPK model,

possibly rescaled and transformed, as θi, and denote its length by p. Thus, for example,

Vmax,i, an element of θi, denotes the maximum rate of metabolism for individual i.

Additional attributes of each individual may also be collected; e.g., gender, ethnicity,

genotype, and so on, that may not be straightforwardly incorporated in the PBPK model.

Denote the collection of these attributes as Ai for individual i. The Ai do not enter into the

basic model; we discuss an extension of the model including them in Section 4.6.
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With these definitions, we may summarize the information available in the study as

(Y i,Ei,Ai,φi), i = 1, . . . , N . The Ei are fixed by the design of the study. On the other

hand, from a statistical perspective, (Y i,Ai,φi) may be viewed as random vectors represent-

ing the data that would be collected in such a study, which take on specific numerical values

once the study has been conducted. A standard assumption made in almost all PBPK anal-

yses based on the hierarchical model below is that the sets of random vectors (Y i,Ai,φi) are

statistically independent across i, which would be the case if the individuals are reasonably

thought to be unrelated, so that, e.g., the way the concentrations might turn out for one

individual is unrelated to the way they might turn out for another. The θi, i = 1, . . . , N , are

also viewed as independent random vectors, where the independence implies that the PK

processes taking place inside any individual do not have a bearing on those for any other.

However, most of the elements of θi, such as metabolic parameters, are not observed. Re-

calling Section 3, estimating population parameters that describe how the θi are distributed

in the population is of central interest in a population analysis.

We may now state the basic form of a hierarchical statistical model formalizing our beliefs

regarding how the observed data from such a study may arise. From the discussion following

(3), the solution to the system of equations defining a PBPK model, which gives expressions

for the compartment-specific concentrations in the model at any time t, usually must be

obtained numerically. Nonetheless, we may conceptualize for the kth of the c compartment-

specific concentrations collected that the solution is a function fk, k = 1, . . . , c, of time t,

exposure level, observed physiological measurements, and unobserved PK parameters. Thus,

for individual i, the PBPK model in principle yields an expression (that may be calculable

only numerically) for the kth compartment-specific concentration, fk(t,Ei,φi,θi), at any
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time t, including at the observation times tij. We may collect these into a vector

f(t,Ei,φi,θi) = {f1(t,Ei,φi,θi), . . . , fc(t,Ei,φi,θi)}
′ (4)

that summarizes the expressions for all c compartment-specific concentrations sampled in

the study for individual i at any time t.

Because the Y i are random vectors, from a statistical perspective, the Yijk are random

variables that, given the values of Ei,φi,θi for individual i, take on their values according to

some probability distribution; we discuss this further in Sections 4.2 and 4.3. In population

PBPK analyses, the Yijk are usually assumed to follow a lognormal or normal probability

distribution. When the magnitude of intraindividual variability is is not too large, as is

typically the case for individual PBPK data, the lognormal and normal distributions are

almost indistinguishable. Thus, for simplicity in describing how the model incorporates a

description of intraindividual variability, we initially write the part of the model describing

individual behavior in a form that is suitable to assuming Yijk are normally distributed, as

is standard in the pharmaceutical population PK literature (e.g., Beal and Sheiner, 1982).

However, the considerations we discuss in Sections 4.2 and 4.3 are equally relevant when

assuming lognormality or yet other models; we discuss this further below.

With these considerations, we write the model as a two-stage hierarchy:

Stage 1: Individual-Level Model Y ij = f(tij,Ei,φi,θi) + eij, j = 1, . . . , ni, (5)

Stage 2: Population Model log(θi) ∼ N (µ,Σ), i = 1, . . . , N, (6)

where “∼” denotes “distributed as” and N (µ,Σ) denotes a multivariate normal distribution

with mean vector µ and covariance matrix Σ.

The “stage 1” individual-level model (5) describes how concentrations observed on individ-

ual i are thought to arise. Thus, (5) pertains only to individual i and would be the statistical
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model used to describe i’s concentrations if i were the only individual of interest. Here, f is

as defined in (4), so represents the collection of expressions for the c compartment-specific

concentrations dictated by (deterministic) PBPK model at each time. It is well-appreciated

that actual, measured concentrations do not correspond exactly to concentrations determined

by the model; thus, the elements of the “deviation” random vector eij = (eij1, eij2, . . . , eijc)
′

represent the amounts by which measured concentrations Yijk in Y ij deviate from those

dictated by the model. Zeroing in on the the kth of the c measured compartment-specific

concentrations, Yijk, (5) implies

Yijk = fk(tij,Ei,φi,θi) + eijk, k = 1, . . . , c. (7)

In (5) and (7), the eijk are also random variables. (7) has the form of a “nonlinear regression

model” with unknown “regression parameters” θi (e.g., Davidian and Giltinan, 1995, Ch.

2), for which it is standard to assume that the “deviations” are normally distributed with

mean 0, so that the Yijk are also normal with mean fk(tij,Ei,φi,θi), viewing Ei,φi,θi as

fixed quantities. An alternative formulation approximately equivalent to assuming that the

Yijk given Ei,φi,θi are lognormally distributed with mean fk(tij,Ei,φi,θi) is

log(Yijk) = log{fk(tij,Ei,φi,θi)} + eijk, k = 1, . . . , c,

log(Y ij) = log{f(tij,Ei,φi,θi)} + eij

(8)

In (8), although we use the same symbol for these “deviations” eijk, they are on a differ-

ent (log) scale than those in (7). In Section 4.2, we discuss the phenomena that may be

responsible for deviations in either model, which have to do with intraindividual variability.

The “stage 2”population model is given this name because it operationalizes the main

goal of population analysis; i.e., it describes how the unobserved PK parameters θi are dis-

tributed in the population of individuals by formally representing how the θi take on their
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values in the population by a probability distribution. It is well-recognized that PK param-

eters, like many biological quantities, tend to have skewed distributions in the population.

Accordingly, it is standard to assume that each component of the random vectors θi takes

on its values in the population according to a lognormal distribution. This is usually rep-

resented equivalently in population PBPK analyses by assuming that the random vector

containing the logarithms of the elements of θi, which we write as log(θi), takes on values

according to a multivariate normal distribution, as in (6). Thus, if θi is p-dimensional, this

is a p-variate normal distribution with mean vector µ = (µ1, µ2, . . . , µp)
′, and each of the

elements µ` corresponds to the mean of one of the PK parameters in θi on the log scale; e.g.,

the mean of log(Vmax,i) values across the population of all possible individuals. The mean

vector µ and its elements are thus population parameters in the sense described in Section 3.

The covariance matrix Σ is also a population parameter; its elements characterize aspects of

the variability of the (log) PK parameters in the population. The diagonal elements of the

covariance matrix Σ are the variances of the logarithms of the p PK parameters in θi, which

we write as (Σ2
1, Σ

2
2, . . . , Σ

2
p), where Σ2

` is the variance in the population of the `th element

of log(θi). Because of the relationship between the normal and lognormal distributions, the

square roots of these variances, the standard deviations Σ`, are approximately equal to the

coefficients of variation (CV) of the PK parameters on their original scales, which is an

alternative, probably more meaningful measure of variability for skewed populations.

A further aspect of variability in the population is represented Σ, that of covariability.

The off-diagonal elements of Σ are the covariances between pairs of log PK parameters in

the population, which may be transformed to the correlation scale. The covariances, and

equivalently correlations, quantify associations (on the log scale) among the PK parameters

in the population; e.g., if individuals with high maximum metabolic rate Vmax,i also tend to
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have high flow rate Fliv,i, these quantities would be positively correlated in the population.

Knowledge of such associations may be useful interpreting why certain subpopulations of

individuals exhibit certain dose-response relationships, for example.

We discuss the population model further in Section 4.6.

Summarizing, the hierarchical statistical model (5)–(6) describes how concentration-time

data in a PBPK study of multiple individuals arise. The second stage population model

characterizes variability in PK in the population by representing individuals in the population

by their PK parameters, which are assumed to take on values in the population according

to the lognormal probability distribution. Thus, we may view the individuals in a study

as being represented by “random draws” from this probability distribution through their

θi. At the first stage, the process by which individuals represented by their specific θi

give rise to measured concentrations is characterized. A notable feature of this individual-

level model is that it embeds the deterministic, mathematical PBPK model into a statistical

framework. This statistical framework says that, viewing the θi for a specific individual as

a fixed quantity that determines his/her concentrations, measured concentrations follow the

trajectory dictated by the PBPK model, but deviate from it due to sources of variability

operating within individuals, whose effects are represented by the eij in (5), discussed next.

Statistical models like (5)–(6) are also referred to as nonlinear mixed effects models or

hierarchical nonlinear models in the statistical literature.

4.2 Sources of Intraindividual Variability

To complete the specification of the stage 1 individual-level model, the analyst must con-

sider carefully the phenomena that are thought to lead to the fact that observed, measured

concentrations do not tend to coincide with those dictated by the PBPK model, but rather
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exhibit variability about the deterministic concentration trajectories it determines. It is crit-

ical that the sources of this intraindividual variability be taken into adequate account. Why?

There is also interindividual variability (among θi) in the population. These two sources of

variability combine to produce the overall pattern of total variability in data that might arise

from a PBPK study. The hierarchical model (5)-(6) effectively partitions this total variability

into its intra- and interindividual components. Thus, because the total variability stays the

same, misrepresentation of the variability from one source leads to an inaccurate partition

of the variability, and thereby can lead to misrepresentation from the other. Thus, failing to

characterize faithfully the nature of intraindividual variability could compromise a key focus

of population analysis, that of quantifying interindividual variability in the population.

Unfortunately, the considerations involved in thinking about intraindividual variability

are generally not emphasized sufficiently in the literature, and many practitioners have a

misimpression that variability of observed concentrations about the PK model trajectory

are due entirely to “measurement error.” This may be an unfortunate consequence of the

tendency in the statistical literature to refer to deviations like eij and eijk in (5), (7), and (8)

as “errors.” While errors in measurement are certainly one key component of intraindividual

variability, there are others whose relative magnitude may be nonnegligible. We now give a

conceptual discussion of some of these sources of variation, which all readers should review.

Section 4.3 provides a technical description of how assumptions on these sources of variation

may be formalized in writing down the full statistical model and may be skipped by readers

uninterested in these details.

Consider a single compartment-specific concentration in the PBPK model; e.g., Cexh in

(3), labeled as the kth among the c compartment-specific concentrations measured in the

study. Focusing on a specific individual i, suppose the observed, measured Cexh, Yijk, for i
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are postulated to follow the individual-level model (7). Here, because we are “zeroing in”

on individual i, we regard i’s exposure pattern E i, physiological measurements φi, and PK

parameters θi as fixed quantities determining i’s data. Thus, in the statistical model (7), the

deviations eijk at times tij represent how the measured concentrations Yijk end up scattered

about the expressions fk(tij,Ei,φiθi) dictated by the PBPK model and i’s particular Ei,

φi, and θi values.

Figure 4 presents a conceptual perspective on two possible sources on intraindividual

variability that may be responsible for this scatter. The solid black line represents the deter-

ministic, continuous time trajectory fk(t,Ei,φi,θi) dictated by the PBPK model at all times

t under the exposure experienced by i (Ei) and the physiology and PK dictated by i’s values

φi and θi. Realistically, the trajectory traced by fk may not capture all within-individual

physiological processes perfectly; e.g., in an inhalation study, an individual’s breathing pat-

tern over time may exhibit natural changes, while in a study sampling urine concentrations

there may be variation in the way in which excretion occurs over collection times. We may

thus conceptualize that the PBPK model, which yields “smooth” a concentration trajectory,

can almost, but not quite, capture the true concentration profile actually realized over all t,

which is influenced by these phenomena. This true profile, if it could be seen exactly for all

t, might look like the solid gray line, which “tracks” the solid line but shows some departures

from (variability about) it for these reasons.

Now, in the study, concentrations are only sampled at the intermittent times tij for

individual i. If the true, actually realized concentrations could be ascertained perfectly, the

recorded values for them would be those at each tij on the solid gray line. However, as

an assay must be used to quantify the concentrations in samples taken at each tij, assay

measurement error may be introduced, so that the measured values actually recorded at
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each tij correspond to the solid diamond symbols in the figure. The deviation eijk in the first

stage statistical model (7) thus represents the combined effect of actual realized concentration

(solid gray line) and measurement error (diamonds) yielding observed concentrations that

deviate from the solid black deterministic trajectory traced by the model, fk(t,Ei,φi,θi).

Now consider that the true, gray concentration profile that i ends up having in the study

(we cannot observe it but can conceptualize its existence as above) is only one of many

such realized true profiles that individual i could have produced under the circumstances

of the study. We can imagine that if the same study of i were repeated over and over,

the realized true profiles each time might be different. For example, i’s breathing pattern

might be slightly different during each possible study of i we might do. Similarly, the assay

errors contaminating the particular true concentrations on i that occurred in the study are

representative of errors that could be committed when quantifying concentrations in such

samples, so that if the same study on i was repeated, the errors committed would be different

every time because of natural variability in the performance of the assay.

With this in mind, we can now interpret the model (7) a little more precisely. As noted

on page 19, the eijk are assumed statistically to have “mean 0.” This means that if we could

average over all possible realized true profiles that i could have and all possible assay errors

that could be committed if individual i were observed under the conditions of the study, the

effects of “realization variability” and “measurement error variability” would all “average

out” to zero. The result is that we may interpret fk(t,Ei,φi,θi) given by the deterministic

PBPK model as the “inherent trajectory” that specifies how i’s concentrations would tend

to evolve over time “on average” under the conditions of the study, where the “average”

is over all possible realizations of actual true concentration profiles that i might have and

measurement errors that could be committed. The PK parameters θi may thus be viewed
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as an “inherent characteristic” of individual i dictating this tendency. Hence, a fundamental

principle underlying population analysis under the hierarchical statistical model (5)-(6) is

that such “inherent” properties of individuals are of central scientific interest.

Of course, once we conduct the study, the data values we actually see are the combined

result of one possible realized true concentration profile and one set of measurement errors.

Our conceptual depiction identifies two potential sources of intraindividual variability:

“realization” variability due to the tendency for true concentrations to deviate from the

“smooth” behavior dictated by fk, and “measurement error” variability. This suggests that

we might rewrite (7) as

Yijk = fk(tij,Ei,φi,θi) + eR,ijk + eM,ijk, eijk = eR,ijk + eM,ijk, (9)

where eR,ijk represents the part of the overall deviation eijk from fk due to “realization”

variability and eM,ijk that due to “measurement error” variability. The analyst’s job in

completing the specification of (5) boils down to making realistic assumptions on the eR,ijk

and eM,ijk; in particular, the probability distributions that describe how they take on their

possible values across all possible realizations and measurement errors. For example, it

may be assumed that “realization deviations” eR,ijk take on their values according to a

N (0, σ2
R,k) distribution, where σ2

R,k is a variance characterizing the magnitude of variability of

“realized profiles” about the deterministic trajectory fk(t,Ei,φi,θi), where the “k” subscript

on σ2
R,k indicates that this variability pertains to the kth compartment-specific concentration.

Likewise, the “measurement error deviations” eM,ijk may be assumed to arise following a

N (0, σ2
M,k) distribution, where σ2

M,k is a variance quantifying the extent of measurement

(assay) error, where again the “k” subscript reminds us that this measurement error variance

pertains to the assay used to quantify the kth compartment-specific concentration. It is often
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assumed that these two sources operate independently, so that the “overall” intraindividual

variance is

σ2
k = σ2

R,k + σ2
M,k. (10)

The analyst must moreover acknowledge that the foregoing considerations apply to each

of the k = 1, . . . , c compartment-specific concentrations that may be measured on each

individual in a study. For example, there would be an “overall” intraindividual variance σ2
k

associated with each of the k = 1, . . . , c measured compartment-specific concentrations.

There are yet further issues that must be considered. First, for a particular compartment-

specific concentration k, from inspection of Figure 4, note that “realized” concentration

values on the gray line close together in time tend to occur “on the same side” of the

“inherent trajectory” fk(t,Ei,φi,θi) (solid line). Statistically speaking, this suggests that

we might expect the eR,ijk in (9), and hence concentration measurements Yijk for the same k

to be correlated over time, where the correlation is stronger the closer together in time two

measurements are taken. In fact, a bit of thought reveals that we might expect the form of

the “realized” profiles for two different compartment-specific concentrations k and k ′, say, to

be associated somehow. For example, if the “realized” (gray) profile for compartment k is

“high” relative to the “on average” trajectory fk(t,Ei,φi,θi) at a particular time because of

how the breathing pattern is manifesting at this time, physiologically, the “realized” profile

for compartment k′ might be correspondingly “low” relative to its “on average” trajectory

fk′(t,Ei,φi,θi) at the same time. Again, this would lead to correlation, this time between

measurements Yijk and Yijk′ taken at the same time point.

One can envision other associations among the way deviations occur that might lead to

still other correlations among measured compartment-specific concentrations. We do not
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discuss this further, but we remark that modeling intraindividual variability appropriately

requires that all suspected correlations be acknowledged in the statistical model. Failure to

take into account strong such “intraindividual” correlations could lead to a serious misrepre-

sentation of the overall pattern of intraindividual variability, and in turn to misrepresentation

of interindividual variability, as discussed at the beginning of this section. Almost all pub-

lished population PBPK analyses ignore intraindividual correlation entirely. The extent to

which this compromises PBPK population analyses is not known and deserves careful study.

Section 4.3 offers a more technical formulation that formalizes these issues. Readers

not interested in these details may wish to proceed to Section 4.4, which summarizes the

full individual-level model that, rightly or wrongly, is usually assumed in published PBPK

population analyses.

4.3 Intraindividual Variability Modeling Considerations∗

We now give a more technical treatment of intraindividual variability modeling along the

lines of that in Davidian and Giltinan (2003, sec. 2.2.2) for readers interested in the details.

Consider again as in Section 4.2 the kth compartment-specific concentration measured in

the study and the individual-level model (7). We may now be more precise about what this

model assumes. As noted previously, we are focusing here exclusively on specific individual i;

thus, we regard i’s exposure pattern Ei, physiological measurements φi, and PK parameters

θi as fixed quantities determining i’s data. Thus, technically, when we say that the eijk in (7)

are taken to have “mean 0,” we mean that, conditional on these quantities, the “deviations”

eijk have mean 0, which is written as E(eijk|Ei,φi,θi) = 0. This implies that (7) specifies

that the mean of measured concentrations Yijk at tij, conditional on Ei,φi,θi, is

E(Yijk |Ei,φi,θi) = fk(tij,Ei,φi,θi). (11)

27



Accordingly, when we refer in Section 4.2 to fk(tij,Ei,φi,θi) as describing the “inherent

trajectory” specifying how i’s concentrations would arise over time “on average,” we mean

formally that fk(tij,Ei,φi,θi) is the conditional mean (11). Similarly, in (9), the “realiza-

tion” deviations eR,ijk and the “measurement error “deviations” eM,ijk are assumed to have

conditional means equal to zero; i.e., E(eR,ijk|Ei,φi,θi) = 0 and E(eM,ijk|Ei,φi,θi) = 0 so

that E(eijk|Ei,φi,θi) = 0. We now consider more formally the considerations involved in

specifying assumptions on what are really the conditional probability distributions of these

deviations and hence of the Yijk; that is, given the particular values Ei,φi,θi.

First, consider eR,ijk. The variance of the conditional probability distribution of the

eR,ijk given Ei,φi,θi quantifies the variability these deviations exhibit about the “inherent

trajectory” fk(t,Ei,φi,θi) in producing a realized gray curve like that in Figure 4. As in

the previous section, we might assume that this variance is the same at all times and equal

to some value σ2
R,k. If we further believe that the probability distribution of Yijk values

given Ei,φi,θi is normal, as in Section 4.1, then it would be natural to assume that the

conditional probability distribution of the eR,ijk at any tij is N (0, σ2
R,k). In addition, as we

noted in Section 4.2, from Figure 4, two true realized concentrations on the gray line at

times close together tend to occur “on the same side” of the “inherent trajectory.” This

implies that for two observation times tij and tij′ , say, sufficiently close in time, eR,ijk and

eR,ij′k would tend to be positive or negative together. On the other hand, realized values at

times far apart bear little relation to each other. Formally, this suggests that the “realization

deviations” are likely to be positively correlated within an individual, with the strength of the

correlation “damping out” as the time points become more separated. We thus consider the

conditional probability distribution of all the eR,ijk, j = 1, . . . , ni, simultaneously. Placing

these in a vector eR,ik = (eR,i1k, eR,i2k, . . . , eR,inik)
′, under the assumption that each eR,ijk
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has a normal distribution as above, the obvious assumption is that

eR,ik |Ei,φi,θi ∼ N (0,V R,ik), V R,ik (ni × ni), (12)

where this notation reminds us that we are treating E i,φi,θi as fixed quantities, and V r,ik

is a covariance matrix; i.e., eR,ik has a ni-variate normal distribution. The diagonal elements

of V R,ik are all equal to σ2
R,k. The off-diagonal elements correspond to the covariances,

and hence the correlations, among pairs of the eR,ijk. Expressions for these off-diagonal

elements that would be candidates for describing the kind of “damped,” serial correlation

anticipated over time are described by Diggle et al. (2001, Ch. 5); one popular model takes

the correlation between two deviations eR,ijk and eR,ij′k at times tij and tij′ to be of the form

exp(−α|tij − tij′ |), where α is a constant to be estimated.

The eM,ijk represent the deviations associated with measuring true realized concentra-

tions using an error-prone assay. Valid measuring techniques and devices tend to commit

haphazard errors over repeated uses; thus, there is no reason to believe that eM,ijk and eM,ij′k

associated with measured concentrations at two times tij and tij′ are correlated, no matter

how close or far apart the times are. The assumption about the variance of eM,ijk should

follow from knowledge of the assay. Some assay procedures tend to commit errors of the

same magnitude no matter what the level in the sample, in which case taking the variance

to be a constant σ2
M,k, as in Section 4.2, at all times is reasonable. Other assays tend to

commit multiplicative errors. This is often handled in PK analysis by working on the log

scale; i.e., using model (8) rather than (7), as on the log scale the errors tend to be of the

same magnitude, making the assumption of a constant variance reasonable. Indeed, all of the

foregoing considerations on intraindividual variability may be applied equally to the model

(8) if a lognormal conditional distribution for Yijk is posited. For definiteness, continuing
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with our description in terms of (7), assuming constant measurement error variance, let-

ting eM,ik = (eM,i1k, eM,i2k, . . . , eM,inik)
′, and taking each eM,ijk to be conditionally normally

distributed, analogous to (12), we have

eM,ik |Ei,φi,θi ∼ N (0,V M,ik), V M,ik (ni × ni), (13)

where, owing to the assumed lack of correlation, V M,ik is a diagonal covariance matrix with

all diagonal elements equal to σ2
M,k.

Combining (12) and (13) leads to an assumption for the probability distribution of the

overall deviations eijk given Ei,φi,θi. If we are willing to believe that that the measurement

process produces measurement error deviations like those in (13) regardless of the nature of

the true realized profile, then we may assume that the random vectors eR,ik and eM,ik are

statistically independent, which leads to the assumption on the eijk given by

eik |Ei,φi,θi ∼ N (0,V i), V i,k = V R,ik + V M,ik. (14)

With V R,ik and V M,ik specified in terms of parameters like σ2
R,k and σ2

M,k (and possibly others

describing correlation in V R,ik), (14) provides a complete description of the interindividual

variability impacting how concentrations of “type k” on a specific individual i arise.

The foregoing discussion has focused on a single concentration k. The fact that an entire

vector Y ij of c ≥ 1 concentrations may be measured at each tij introduces a further complica-

tion when c > 1. As we noted in Section 4.2, we may conceptualize a representation like that

in Figure 4; for each k; i.e., for each k there are possible true realized concentration profiles

and measurement errors, where the measurement errors for each k arise from different assay

procedures. A standard assumption is that the measurement errors committed by different

assay procedures when quantifying different samples (e.g., from exhaled air and venous blood)

30



are completely unrelated. Hence, if we consider the vector eM,ij = (eM,ij1.eM,ij2, . . . , eM,ijc)
′

consisting of the “measurement error” deviations at time tij, its covariance matrix will be

diagonal, with diagonal elements (σ2
M,1, σ

2
M,2, . . . , σ

2
M,c) corresponding to the measurement

error variances for each assay. However, as we noted in Section 4.2, it could well be that

the deviations eR,ijk associated with actual realized concentration profiles for each k at each

time point j may be correlated in the sense that “local fluctuations” due to, for example,

variation in breathing patterns, and failure of the model to capture perfectly all physiological

processes for one concentration may be related to those for another. If we consider the vector

eR,ij = (eR,ij1.eR,ij2, . . . , eR,ijc)
′ consisting of the “realization deviations” at time tij for all c

concentration measures, eR,ij has a nondiagonal covariance matrix whose diagonal elements

are (σ2
R,1, σ

2
R,2, . . . , σ

2
R,c) but whose off-diagonal elements would have to specified according

to the analyst’s belief regarding how this correlation arises.

What is ordinarily assumed in population PK and PBPK analyses in the literature? The

assumptions made are generally not stated explicitly, but in light of our discussion here

may be identified straightforwardly. The correlation described in the previous paragraph is

generally assumed to be negligible. Whether this is a realistic assumption would need to be

critically examined, which could be undertaken informally by calculating sample correlations

among the Yijk across k at each time point; more sophisticated approaches are possible. It

is also standard to regard the eR,ijk as being uncorrelated across times tij. One justification

for this assumption that is often given is that the tij are sufficiently far apart in time rela-

tive to the “locality” of the “fluctuations” in a true realized concentration trajectory that

correlations among the eR,ijk and hence the Yijk over time may be disregarded as negligible.

Again, such an assumption can be evaluated; Diggle et al. (2001, Ch. 5) discuss diagnostics

for this purpose. With these considerations, the Yijk conditional on Ei,φi,θi are assumed
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statistically independent across k; moreover, the matrix V R,ik in (12) and (14) reduces to a

diagonal matrix whose diagonal elements are all equal to σ2
R,k, in which case the matrix V i,k

in (14) reduces to a diagonal matrix with diagonal elements given in (10).

This information may be rearranged in an alternative manner consistent with how things

are often presented in accounts of population PBPK analyses (e.g., Bois et al., 1996) and

the way the individual model is given in (5), as shown next.

4.4 Popular Individual-Level Model

As we noted above and at the end of Section 4.2, it is standard in published population

PBPK analyses to assume that correlations among deviations, and hence measured concen-

trations, both over time and across compartments, are negligible, and so can be disregarded

in developing the statistical model. This is exactly that, an assumption, and it may or may

not be correct, as we discuss shortly. Further assumptions are those given on page 25, namely

that that the deviations eijk in (7) and (9) are normally distributed with overall variances

σ2
k as in (10). Under all of these assumptions, the individual-level model is often expressed

as follows in published accounts.

Define the matrix σ to be a diagonal matrix with diagonal elements (σ2
1, . . . , σ

2
c ), where

σ2
k is defined in (10), and off-diagonal elements all equal to zero. Then the assumptions in

the last paragraph on the deviations eijk may be expressed succinctly as the assumption that

the vector eij of these deviations has a N (0,σ) distribution, and this is the case for all times

j = 1, . . . , ni. Incorporating this assumption with (5), then, we arrive at the full probability

distribution specification for the individual-level model that takes into account beliefs about

intraindividual variability, namely

Y ij |Ei,φi,θi ∼ N{f(tij,Ei,φi,θi),σ } for all j = 1, . . . , ni, (15)
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independently across j. The notation in (15) reminds us that, because we are focusing on

individual i only, we are conditioning on the exposure pattern E i, physiological measure-

ments φi, and unknown PK parameters, treating these as fixed quantities determining how

concentration measurements on i arise. An entirely parallel development may be carried out

on the log scale as in (8), yielding

log(Y ij) |Ei,φi,θi ∼ N [ log{f(tij,Ei,φi,θi)},σ ] for all j = 1, . . . , ni. (16)

Other individual-level models are possible; e.g., like (15) but with intraindividual variability

in concentration k proportional to fk; see Davidian and Giltinan (1995, Ch. 2; 2003, p. 398).

Recall from (10) that the variances σ2
k are the sum of two variances characterizing “re-

alization” variability and “measurement error” variability, respectively. In some published

analyses, the σ2
k are described as being strictly “measurement error variances.” This implies

the belief that the magnitude of variability due to assay error relative to that due to intrain-

dividual “fluctuations” in the gray curve in Figure 4 is sufficiently large so as to completely

dominate the latter’s effects, so that effectively

σ2
k = σ2

R,k + σ2
M,k ≈ σ2

M,k for each k. (17)

A specification like (15) and assumptions like (17), although routinely made, are not justified

unless the analyst believes they are realistic. If they are not, intraindividual variability has

been misrepresented, and, as discussed at the outset of this section, this could compromise

reliable inferences on the variability in the population.

Are the usual assumptions given at the outset of this section reasonable? They may be

in some circumstances and not in others. Assumptions in any statistical model should be

defensible on scientific grounds, and the consequences of their violation must be understood.
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Assumptions such as negligible intraindividual correlations over time or among the c “true”

concentrations are often made to simplify the model so that it is easier to fit. However,

this is not adequate justification for such an assumption unless it can be demonstrated that

the results of analyses are relatively insensitive to it, especially inferences on population

parameters. As discussed in Davidian and Giltinan (2003, sec. 2.2.4), there is some evidence

that assuming that correlation among realized true concentrations over time is negligible

may be reasonable in some cases. Further study in the context of PBPK analysis is required.

4.5 Implication of PK/PBPK Model Misspecification

Our development here tacitly assumes that the PBPK model leading to the expression fk

is a reasonable specification for “inherent trajectories,” with actual realized concentration

profiles varying about them. Thus, the eR,ijk are assumed to represent minor departures

from the inherent trajectories due to the inability of any “smooth” deterministic function

to capture all the relevant biology. However, if the PBPK model is not sufficiently rich

to capture adequately more predominant features of the true “inherent” behavior; e.g., it

involves three compartments when four are really needed, then a rather serious PK model

misspecification is involved. Here, the fk may not be acceptable approximations to the

“inherent trajectories” of relevant concentrations, and, accordingly, part of what the eR,ijk

are representing is in fact systematic bias, which the statistical model will interpret wrongly

as part of random intraindividual variability. In this case, the meaning and relevance of the

PK parameters in the misspecified model may be compromised.

A natural question is whether one can deduce easily whether such a model misspecifica-

tion has been committed. In some situations, a plot of concentration-time data may reveal

clearly that a PK model is grossly inadequate. In other settings, this may not be entirely
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obvious, as the model misspecification may not be too great, but still substantial enough

to endanger interpretation. Here, the analyst faces the classical problem of distinguishing

“signal” from “noise.” The fact that the data deviate in a mild but apparently systematic

fashion from the inherent trajectories dictated by the model may be due failure of the PBPK

model (misrepresentation of the “signal”) or failure of the statistical model to characterize

accurately intraindividual variability, in particular intraindividual correlation (misrepresen-

tation of the “noise”). However, based on the data alone, it is impossible to know which is

the true explanation! This conundrum can sometimes be resolved by careful consideration of

additional scientific information, but it must be understood that the data alone are not suf-

ficient under these conditions distinguish mechanistic model misspecification from statistical

model misspecification.

A more detailed discussion of this may be found at the end of Section 2.2.2 of Davidian and

Giltinan (2003). In any event, the possibility of PBPK model misspecification substantiates

the importance of identifying as realistic a PBPK model as is possible, as population analyses

are predicated on its correctness.

4.6 Interindividual Variability Modeling Considerations

We have already reviewed the basic considerations underlying the stage 2 population model

(6). Here, we mention some additional issues. In some population PK analyses, the covari-

ance matrix Σ representing interindividual variability and covariability of the θi is taken

to be a diagonal matrix, with, as before, diagonal elements (Σ2
1, Σ

2
2, . . . , Σ

2
p). This implies a

belief that there are no associations in the population among PK parameters. This is almost

always a highly unrealistic assumption often made to simplify fitting of (5)-(6). Restricting

Σ to be diagonal when it is not misrepresents fairly dramatically the nature of variability of

35



θi in the population, forcing any covariability that truly exists to be accommodated by the

model in some other way. A result is that the estimates of the population variances Σ2
` as

well as aspects of intraindividual variability can be flawed.

As noted at the end of Section 3, a refined population analysis attempts deduce whether

some of the population variability in the θi can be attributed to systematic associations be-

tween the θi and individual attributes. For example, Jonsson et al. (2001) discuss a study of

methyl chloride, which is metabolized by the enzyme glutathione S-tranferase T1, for which

a genetic polymorphism has been shown; on this basis, individuals in the population may be

classified as “conjugators” or “nonconjugators,” and conjugator status is clearly systemati-

cally associated with metabolism. Similarly, Mezzetti et al. (2003) recorded information on

gender and race/ethnicity, and age group, factors which might be thought to explain some

population variability in kinetics.

To discuss the required generalization of the population model (6), first note that an

equivalent way to represent (6) is

log(θi) = µ + bi, bi ∼ N (0,Σ), i = 1, . . . , N, (18)

where, as before θi and hence µ and bi have length p. In (18), the bi may be viewed

as a mean zero “deviation” random vector that represents where the PK parameters for

individual i “sit” in the population relative to the population mean µ and are referred to as

random effects. (18) is reminiscent of a “regression model,” where log(θi) plays the role of

the “dependent variable” and the “mean” is the same for all individuals.

If individual attributes Ai have been collected, it is natural to think that the mean of

the “dependent variable” log(θi) might be systematically associated with values of Ai, as

in a conventional regression model. As a simple example, suppose that the single attribute
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“conjugator status” has been collected, represented by Ai = 0 for non-conjugators and

Ai = 1 for conjugators. We may wish to allow the possibility that the mean value of θi in

the subpopulation of non-conjugators, µ0, say, is different from that in the subpopulation

of conjugators, µ1, say, although the variability about the mean in each subpopulation is

similar. This may be accommodated by modifying (18) to

log(θi) = µ0Ai + µ1(1 − Ai) + bi. (19)

If we define β to be the vector of length 2p stacking µ0 and µ1 together, then we may

interpret interpret β as a “regression parameter” in the “regression model” (19). This idea

can be extended to models incorporating multiple attributes simultaneously. Writing “re-

gression models” in terms of “regression parameters” and “random effects” for this purpose

is standard in the population PK literature (e.g., Davidian and Giltinan, 2003, sec. 2.2.1).

A key objective of population PK analyses for pharmaceutical agents is to “build” such re-

gression models to identify and include attributes systematically associated with population

variability (Maitre et al., 1991; Mandema et al., 1992; Davidian and Gallant, 1992). We

do not consider more general population models like (19) in this article. We do emphasize,

however, that µ in (18) and indeed β in (19) are population parameters and thereby are of

central interest in population analysis. In Section 5.1, we make additional comments on the

interpretation of µ, which extend to parameters like β in fancier models.

The population model (6), and, equivalently, (18), make a specific assumption about

how log(θi) are distributed in the population, namely, that they take on their values in

the population according to a normal distribution. This, and indeed the assumption of any

specific probability distribution for this purpose, imposes a structure with certain features

for the population that may not always be consistent with the true structure. For example,
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the normal distribution is unimodal and symmetric, having a single peak representing values

that are most likely to be seen, with more extreme values less but equally likely due to sym-

metry. Some populations may have a structure that is bimodal, with two peaks representing

possible subpopulations attributable to a feature that is unknown or unmeasured, or may be

asymmetric. Inference on population parameters like the population mean µ and covariance

matrix Σ could be compromised if the probability distribution chosen for the population

model is unrealistic. In the context of drugs, models that replace the normality assumption

by a less restrictive one including many different possible probability distributions and meth-

ods for fitting them have been proposed (e.g., Mallet, 1986; Schumitzky, 1991; Davidian and

Gallant, 1992; Rosner and Müller, 1994; Müller and Rosner, 1997).

4.7 Summary

Integrating the considerations in Sections 4.2– 4.4 with the basic hierarchical model (5)-(6),

a fully specified model involves (i) a probability distribution describing how, conditional

on exposure Ei, physiological measurements φi, and PK parameters θi for each individual

i = 1, . . . , N , measured concentrations arise on each i, which embodies an explicit set of

assumptions about intraindividual variability; and (ii) a probability distribution describing

how PK parameters θi occur and vary in the population, thereby explicitly representing

interindividual variability. A key objective is to estimate the population parameters µ and

Σ that describe (ii), as well as other quantities. In Section 5, we discuss how these probability

distributions play a role in the development of estimation methods for this purpose.

Intuitively, concentration measurements on the same individual share common features

simply because they are from the same individual, whose individual PK parameters dictate

how they arise. More formally, concentration measures on the same individual are correlated
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at the level of the population in that concentrations on the same individual may tend to

be “high” or “low” together relative to those on other individuals because of this shared

dependence. (This is a different phenomenon from the intraindividual correlation discussed

in Sections 4.2–4.4, which is relevant even if only a single individual is of interest.) The

hierarchical model automatically implies that this is the case, because all Yijk for individual

i depend on the common θi; see Davidian and Giltinan (2003, sec. 2.2.4) for more. Valid

methods for population analysis based on the hierarchical statistical model thought to give

rise to the data naturally take this feature into account.

4.8 Variability vs. Uncertainty

It is important to recognize that specification of the hierarchical statistical model is made

independently of any estimation method for implementing the model; e.g., using the Bayesian

inferential approach becoming increasingly population in this regard, discussed in Section 5.8.

The term “nonlinear mixed effects model,” for example, refers specifically to models like this

that describe how longitudinal data in a study of multiple individuals are thought to arise and

may be used independently of reference to a particular estimation method. There has been

some confusion about this in the traditional population PK literature, where this term has

been construed to refer also to the class of estimation techniques based on approximation to a

relevant likelihood function, reviewed in Section 5.5. As a result, other estimation techniques

like the “two-stage” methods reviewed in Section 5.4 have been interpreted mistakenly as

being irrelevant to “nonlinear mixed effects models” when they are really just another way

to fit them, as we demonstrate shortly.

It should be clear from this section that the term variability as it is usually used in the

literature on population analysis refers to the fact that biological entities and observations
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we might make on them vary naturally. In some cases, we may be able to control the

extent of variability; for example, if the magnitude of variability due to measurement error

is substantial, it may be possible to develop a more precise assay technique that can offer a

reduction in intraindividual variability attributable to measurement error. Other sources of

variability are dictated by nature, and thus we are “stuck with them.” If we are interested

in a particular population of humans, for example, interindividual variability in PK in this

population is whatever it is. A goal of population analysis is to characterize the nature and

magnitude of this “uncontrollable” variability.

Understanding variability has another important implication, having to do with the con-

cept of uncertainty. Classically, given we have a statistical model that we believe gives an

approximately realistic description of the true data generating process, uncertainty has to

do with how well we can learn about, i.e., estimate, quantities of interest in the model based

on data in the face of variability. In population analysis, the main quantities of interest are

population parameters, and thus a population analysis must also quantify the uncertainty

with which these parameters are estimated. Quantifying uncertainty is important because

it gives us a sense of the faith we should be attaching to the results of an analysis. An

estimate of a population parameter for which the associated uncertainty is large is of little

value. Thus, formally assessing and quantifying uncertainty is a requirement for any analysis

of data leading to estimates based on a statistical model.

Intuitively, if variability in the processes giving rise to data is large, we might expect to

obtain estimates that have high associated uncertainty. This premise is formalized in the

classical way of quantifying uncertainty in frequentist statistical thinking through the notion

of sampling variability, which we review briefly. In this way of thinking, the sample of data we

actually obtain after conducting an experiment is viewed as only one of many possible such
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samples (with the same sample sizes N and ni) that we could have ended up obtaining. Each

potential such sample would lead to an estimate for the population parameter of interest,

where it is taken as given that there is a fixed, true value of this parameter that characterizes

the population; e.g., the average value of Vmax in the population is 0.2 mg/min, say. If

all of these possible estimates vary considerably across all these potential samples, then,

informally, we would feel “uncertain” that the estimate we obtained from our sample is a

reliable reflection of the true value of the population parameter, because if we had ended

up with a different sample, the estimate could have been quite different. On the other

hand, if all possible estimates do not vary too much, then we would feel fairly “certain” that

our estimate is reliable, because another sample would have given something similar. This

suggests that we can quantify uncertainty by quantifying the variability across the estimates

that could be obtained from all possible samples, referred to as sampling variability. The

sampling distribution, the probability distribution that describes how the possible estimates

take on their values across all potential samples, gives a formal picture of this sampling

variability. An estimate of the standard deviation of the sampling distribution, often called

a standard error, is the measure used when a single number is desired to quantify the extent

of such sampling variability; the entire sampling distribution gives a complete picture.

For valid estimation methods for fitting complex statistical models like (5)-(6), the exact

form of the sampling distribution associated with the estimates of population and other pa-

rameters is generally impossible to determine analytically. However, it may be approximated.

One way to approximate the sampling distribution is by a mathematical approximation that

is typically reasonable for “large” sample sizes (“asymptotic” approximation); here, the ap-

proximate sampling distribution is usually a normal distribution whose mean is equal to

the true value of the parameter being estimated. Another way to approximate sampling
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distributions is by the simulation procedure known as the bootstrap.

It is well-established that the sampling distribution and the extent of sampling variability

it involves depend on two things: the extent of variability in the processes giving rise to data

and the sample size. In the hierarchical model (5)-(6), then, phenomena contributing to

sampling variability are the magnitudes of intra- and interindividual variability leading to

the data, the number of individuals N sampled from the population, and the number of

observation times ni on each. As discussed above, these sources of variability, especially

interindividual variability, are whatever they are. Thus, this dictates that if we wish to

achieve smaller sampling variability and thus reduce uncertainty for inferences on population

parameters, our primary option is to conduct larger studies. In most population studies of

humans, interindividual variability tends to be the predominant source of variability; thus,

it should come as no surprise that studies with larger N will lead to sampling distributions

of estimates of population parameters that have smaller sampling variability.

The foregoing discussion reviews the differences between variability and uncertainty and

the connection between these concepts from the classical point of view. The term uncertainty

is also sometimes used to refer to other aspects of population analysis. For example, if there

are components of or assumptions in our statistical model that we feel are shaky, e.g., three

compartments vs. four compartments for the PBPK model or negligible vs. nonnegligible

correlation, then this also makes us uncertain, but, as we have discussed, the consequences

are more likely to manifest as estimates that may be misleading because they do not estimate

what we think they do, and this would be the case even if there were only modest variability.

In this article, we use the term uncertainty to refer specifically to the quality of estimates in

an approximately “correct” model, as described above, and use “model misspecification” to

refer to these other possible pitfalls.
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It is a common misconception that hierarchical statistical models are by nature “Bayesian”

and that Bayesian methods are required to characterize the variability and uncertainty inher-

ent in analyses based on the model. As we discuss in the next section, quantifying variability

and characterizing uncertainty is possible in any of the estimation methods for the hierarchi-

cal model (5)-(6). The Bayesian approach takes a different view of representing uncertainty,

which we review in Section 5.8 and contrast with the classical perspective above. The

Bayesian approach has some particularly attractive features for population analysis using

PBPK models, as we highlight, which has made it a focus of great recent interest.

5 Parameter Estimation

In this section, we review a number of methods that have been used for fitting the model

(5)-(6) to data like those described in Section 4.1. Our discussion focuses primarily on

estimation of the population parameters µ and Σ, although it turns out that estimation

of µ and Σ must be carried out jointly with estimation of other quantities, such as the

intraindividual variances σ2
k, k = 1, . . . , c, in (10). For convenience, we refer to all of the

quantities to be estimated collectively as Ω = (µ,Σ,σ), adopting the notation σ at the end

of Section 4.4 to summarize the intraindividual variances. In discussing estimation methods,

we follow the conventional use of the term “parameter” in statistics to refer to an unknown

quantity to be estimated; thus, both the population parameters µ and Σ as well as σ are

“parameters” to be estimated the statistical model, although our main interest is in the

population parameters. Some of these methods have traditionally been used in population

analyses based on empirical PK models for drugs, for which the numbers of PK parameters

are considerably smaller than in PBPK models and for which the numbers of individuals N

in studies may be considerably larger than in human exposure studies. As we discuss later,
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many of these have some limitations for analyses based on more complex PBPK models.

Readers wishing a “big picture” understanding of the methods free of most technical

details need read only selected parts of this section. All readers should read Sections 5.1,

5.2, 5.7, 5.8, and 5.10. Readers desiring a more technical description of the methods will wish

to review Sections 5.3–5.6 and 5.9; these sections can be skipped by “big picture” readers.

More formal accounts of these methods are in Davidian and Giltinan (1995; 2003, sec. 3).

Although estimation of the population parameters is usually the key objective, methods to

“estimate” individual PK parameters θi associated with specific individuals is also possible

within the hierarchical model framework. Section 5.11, which is also rather technical, reviews

methods for doing so, and can be skipped by readers not interested in the details.

5.1 What Not To Do, And Why

Before we discuss valid methods, we mention a few key points.

An important function of a statistical model is to provide a sound basis for developing

estimation methods; as we will see shortly, methods for population analysis follow directly

from consideration of the hierarchical model. However, some analysts have been tempted to

“simplify” population analysis by estimating µ via an ad hoc approach that does not respect

the structure of the model and data. The fact that the observations Yijk arise from different

individuals i is effectively ignored, and the “nonlinear regression model”

Yijk = fk{tij,Ei,φi, exp(µ)} + εijk (20)

is fitted by ordinary least squares (OLS), treating E i,φi as fixed quantities and µ as the

“regression parameter.” In (20), note that log(θi) is replaced by µ, as if the (log) PK

parameters for all individuals were all equal to their mean values in the population. Moreover,
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the entire structure of intra- and interindividual variability is ignored, as the OLS method

regards all of the εijk in (20) as statistically independent with mean zero and the same

variance; thus, this approach ignores the correlation among concentration measurements on

the same individual discussed in Section 4.7. A way to estimate Σ is not even evident. In

light of the considerations in Section 4, this approach clearly has no defensible rationale. For

these reasons, Sheiner and Beal (1980) refer to this as the “naive pooled data” method and

present evidence demonstrating its poor performance in the context of empirical PK models.

In some toxicokinetic studies, the data are available only in aggregated form. One way this

arises is when individuals are observed longitudinally at the same time points; however, the

individual concentration measurements Yijk are not available. Rather, only sample averages

and sample variances across individuals are reported at each time point (e.g., Covington et

al., 2006; Hack et al., 2006l Marino et al., 2006). An analysis purporting to estimate µ

(and Σ) might be based on treating these as “data.” For example, assuming all individuals

received the same exposure E and writing the sample averages over i as Y jk at times tj, say,

one possibility would be to “fit” a “model” like

Y jk = fk{tj,E,φ, exp(µ)} + εjk,

where φ is average of the known physiological measurements across i. This cannot lead to

a credible estimate of µ, as follows. The way in which we believe concentration measure-

ments to arise does not change: each individual still has his/her own PK parameters θi and

physiology φi governing how his/her concentrations arise. Thus, the hierarchical model is

still a valid representation of how the individual concentration measurements that go into

the aggregated sample averages and variances arise. Thus, any valid method for estimating

the population parameters should respect the underlying hierarchical model. Trying to use
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the sample averages in this ad hoc way does not satisfy this requirement.

Another form of aggregated data comes about in animal studies involving serial sacrifice.

Here, each individual animal contributes only a single concentration measurement, so that

sample averages and variances at different time points do not involve repeated measurements

from the same individuals; i.e., the data are cross-sectional. Nonetheless, as before, the

hierarchical model still provides a description of how even a single concentration measurement

arises for any animal (governed by that animal’s θi and φi) and hence ad hoc estimation

methods that do not respect its structure are suspect.

These considerations indicate that, ideally, in either of these aggregated data situations,

a valid estimation method for the population parameters must use the hierarchical model

that describes how the data that were aggregated arose as a starting point to derive a

corresponding model to describe the aggregated data. This implied aggregated data model

would then be an appropriate basis for estimation of population parameters. Derivation

of such a model is possible in principle, and we discuss this further in Section 6.1. Some

analysts wonder whether it is really necessary to do this as opposed to carrying out an ad hoc

analysis as above; how “bad” can the latter really be? A comprehensive study of this issue

in the context of PBPK population has not to our knowledge been conducted. It may well

be that in certain situations reasonable ad hoc estimates of the population parameters may

be obtained; however, as such circumstances have not been characterized, we discourage this

practice. It is also worth noting that, regardless of the quality of the population parameter

estimates so obtained, it is not clear how to characterize faithfully the uncertainty associated

with them without reference to an appropriate statistical model (a point discussed further

by Sheiner and Beal, 1980, in the context of the “naive pooled data” method above).

To further understand why the ad hoc methods in this section are invalid, it is useful
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to appreciate the interpretation of the population parameters, especially µ. From (6) and

Section 4.6, we have already emphasized that the correct interpretation of µ is as the average,

or “typical” value of the unknown (log) PK parameters in the population. If we substitute µ

for the unknown log PK parameters in the PK model, as in (20), the resulting expression is

not the same thing as the “typical” or average concentration profile. That is, µ does not have

the interpretation as the value of the log PK parameter leading to “average concentrations.”

To appreciate this distinction in a simple case, consider Figure 3 and pretend that the

12 individuals in the plot are the entire population and that the depicted profiles are the

“inherent trajectories” for each individual, given by the one compartment model (2),

ka,iD

Vi(ka,i − Cli/Vi)
{exp(−Clit/Vi) − exp(−ka,it)}, B ≡ 1, (21)

where θi = (ka,i, Cli, Vi) are the PK parameters for individual i. The “typical” or average

concentration profile is found by averaging (21) across all individuals. On the other hand,

substituting µ = (µka
, µCl, µV )′, say, for log(θi) in (21), gives

eµka D

eµV (eµka − eµCl/eµV )
{exp(−eµClt/eµV ) − exp(−eµka t)}, (22)

which clearly is not the same. In the first case, the nonlinear functions (21) of (log) θi are

averaged directly, whereas in (22) the “averaging” is over the log(θi) prior to insertion of these

into the PK model. Thus, (22) has the interpretation instead as the “inherent concentration

profile corresponding to an individual who has the average values of the (log) PK parameters

in the population,” which is different from the “average of individual concentration profiles

across the population.” In fact, there may be no real individual in the population with all

of his/her (log) PK parameters exactly equal to the “typical” or average value µ! In view of

this, the practice of inserting the estimate of µ into the PK model and plotting the resulting
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concentration profiles, as in (22), is a rather meaningless display from the point of view of

population analysis. See, Davidian and Giltinan (2003, sec. 2.4) for more discussion of this

admittedly subtle but important point.

Finally, because the dimension p of the vector of unknown PK parameters θi can be large

in PBPK models, and there is scant information in the data on some of the components, a

common practice in some analyses involving PBPK models is to hold these components fixed

to literature values that are the same for all individuals and estimate only those parameters

“of interest” (a recent example is Yokley et al., 2006). For example, if the focus is on

understanding metabolism, literature values may be substituted for all elements of θi except

Vmax,i and Km,i in (3), with the population analysis then focusing on estimation of µ and

Σ pertaining to these parameters only. There are conceptual problems associated with this

practice, to which we return in the sequel.

5.2 Classical Methods for Estimation of Population Parameters

In the previous section, we noted that valid methods for population analysis must be pred-

icated on the hierarchical statistical model (5)-(6) and the analyst’s assumptions about its

components. A natural basis for classical frequentist statistical inference that respects the

form of a statistical model thought to give rise to the data is the method of maximum like-

lihood, which provides a basis for estimating parameters in the model. We now describe the

basic idea in the context of the hierarchical model (5)-(6).

To implement maximum likelihood estimation for population analysis based on the hier-

archical model, one must write down the so-called likelihood function for all parameters to be

estimated, which in this case are Ω = (µ,Σ,σ). Loosely speaking, the likelihood function

describes formally the probability of “seeing the data we saw,” which is viewed as depending
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on the values of the parameters. For the hierarchical model, the likelihood function is thus

found by writing down an expression for this probability based on the probability distribu-

tions assumed at both the individual-level and population model stages; i.e., (6) and (15)

or (16). In Section 5.3, the form of the likelihood function L(Ω), say, so derived is given

explicitly in (25) and is quite complex, as discussed further shortly. The idea underlying

maximum likelihood estimation is to take as the “best estimates” for the parameters in the

model, Ω here, as the values that maximize the likelihood function L(Ω). That is, the max-

imum likelihood estimates are taken as the values corresponding to the highest probability

of having ended up with the actual data observed. Thus, to estimate Ω and thereby the

population parameters µ and Σ, we maximize L(Ω) in Ω.

Standard theory for maximum likelihood provides an approximation to the sampling

distribution associated with the resulting estimate Ω̂ that is reasonable if N is “sufficiently

large” (and, of course, if the statistical model is approximately correct and not misspecified).

The sampling distribution is an approximate multivariate normal distribution with mean

equal to the true value of Ω and sampling covariance matrix that characterizes the sampling

variability. This distribution may be used to quantify the (classical) uncertainty associated

with the resulting estimate of Ω (and thus those of µ and Σ). The square roots of the

diagonal elements of the covariance matrix provide approximate estimated standard errors.

The off-diagonal elements of the sampling covariance matrix quantify the extent to which

determination of the estimate for one parameter depends on another, and is a critical part

of uncertainty assessment; see Bernillon and Bois (2000) for discussion.

As noted above, the form of L(Ω) turns out to be complicated, and its evaluation in-

volves the need to carry out N intractable, high-dimensional integrations. This renders its

maximization a very difficult numerical problem, as discussed in more detail in Section 5.3.
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As a consequence, methods for population analysis have been developed that attempt to

approximate the results of maximizing L(Ω), thus yielding estimated values Ω̂ that are only

approximations to the value that would be obtained if maximization of L(Ω) itself were com-

putationally feasible, with corresponding approximations to the sampling distributions. The

so-called two-stage methods are based on estimating θi for each individual i separately based

on the individual-level model (5) using standard methods such as least squares or maximum

likelihood for individual data. These estimates are then treated as “data” for estimating µ

and Σ in particular. Another class of methods is the first order methods, various versions

of which are based on approximating L(Ω) by something more tractable. Both classes of

methods have seen heavy use in population analyses for pharmaceutical agents; technical

descriptions and descriptions of the precise manner in which they approximate maximiza-

tion of L(Ω) are given in Sections 5.4 and 5.5. Approaches to maximizing L(Ω) directly are

discussed in Section 5.6. Readers uninterested in the details should proceed to Section 5.7.

5.3 Maximum Likelihood Estimation∗

Here, we present the form of the likelihood function L(Ω) for the hierarchical model, which

demonstrates clearly the complexity involved in its practical maximization.

Writing as before Y i to denote the random vector of all concentration measurements

on individual i, the likelihood for Ω given the observed data, L(Ω), may be based on the

joint probability density function of all the Y i, i = 1, . . . , N , given the collection of (Ei,φi),

i = 1, . . . , N , which, by the assumed statistical independence across individuals, factors into

the product of the N probability density functions for the individual Y i given (Ei,φi). So

we must derive these densities based on the assumptions of the statistical model.

Focusing now on individual i, from the frequentist perspective, θi is an unknown random
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vector. Thus, it is “integrated out” from the likelihood function. To discuss estimation

methods in a manner consistent with their presentation in the traditional population PK

and statistical literature, we invoke an equivalent way of writing the hierarchical model

(5)-(6) in which the PBPK model is reexpressed (“reparameterized”) in terms of unknown

γi = log(θi), γi ∼ N (µ,Σ), as f(tij,Ei,φi,γi). (23)

Adopting this reexpression of the model, letting pi(yi|Ei,φi,γi; σ) be either the normal or

lognormal probability density function corresponding to the assumptions (15) or (16), and

letting ϕ(γi; µ,Σ) be the p-variate normal probability density function with mean µ and

covariance matrix Σ, the probability density function for Y i given (Ei,φi) is

pi(yi|Ei,φi; σ,µ,Σ) =

∫
pi(yi|Ei,φi,γi; σ) ϕ(γi; µ,Σ) dγi. (24)

The likelihood function is then given as the product of (24) over i, namely

L(Ω) =
N∏

i=1

pi(yi|Ei,φi; σ,µ,Σ) =
N∏

i=1

∫
pi(yi|Ei,φi,γi; σ) ϕ(γi; µ,Σ) dγi, (25)

where in (25) yi, i = 1, . . . , N , correspond to the actual observed values of Y i, i = 1, . . . , N ,

once the study is conducted. To estimate Ω and thereby the population parameters µ and Σ,

we maximize L(Ω) in Ω. As noted in Section 5.2, standard theory for maximum likelihood

provides an approximation to the sampling distribution associated with the resulting estimate

Ω̂ that is reliable if N is “sufficiently large.”

The maximization in principle may be carried out using standard optimization soft-

ware. A major stumbling block is that the N p-dimensional integrals in (25) are analytically

intractable, as the integrands are very complicated, nonlinear functions of γ i, and these inte-

grals are high dimensional. Although in principle they can be approximated using numerical
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integration techniques (quadrature or Monte Carlo), this can be computationally burden-

some for p even as small as 3, as each integral must be numerically evaluated repeatedly at

each iteration of the optimization algorithm used to find the maximizer of (25). For PBPK

population analyses, the dimension of p makes this approach daunting. Moreover, an addi-

tional complication is that the system of differential equations must be solved numerically

for each individual at each time point within each optimization iteration. It is thus not

surprising that traditional methods for population analysis seek instead to approximate in

other ways or otherwise circumvent these integrals, detailed in the next two sections.

5.4 Two-Stage Methods∗

A common misconception is that this approach is somehow unrelated to the hierarchical

model, but it may indeed be viewed as an attempt to approximate the integrals in (25).

When sufficient data on each individual are available to fit the individual-level model (5)

to each individual’s data separately; i.e., estimate γ i (θi) for individual i based on his/her

observed data yi using a least squares or maximum likelihood method for individual data,

one may obtain individual-specific estimates γ̂i for each i = 1, . . . , N . “Two-stage” methods

use these as “data” for estimating µ and Σ.

A naive approach is to pretend that the γ̂i are exact “stand-ins” for the unknown γ i and

estimate µ and Σ by the sample average and sample covariance matrix of the γ̂i; i.e.,

µ̂ = N−1

N∑

i=1

γ̂i, Σ̂ = (N − 1)−1

N∑

i=1

(γ̂i − µ̂)(γ̂i − µ̂)′.

The problem with this approach, which has been called the “Standard Two-Stage” method

in the population PK literature (Steimer et al., 1984), is that the γ̂i are not equal to the

γi; instead, they are uncertain estimates of the γ i in the sense discussed in Section 4.8.
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The result is that although µ̂ can give a reasonable estimate of µ, the Σ̂ cannot give an

accurate reflection of the true interindividual population variability because the γ̂i also

involve additional sampling variability due to the fact that they estimate, but are not exactly

equal to, γi (see Davidian and Giltinan, 1995, sec. 5.3.1).

The naive approach fails because it does not refer back correctly to the structure of the

data as represented by the hierarchical model. The sampling variability in each γ̂i comes

about because of the intraindividual variability at the individual level, which is characterized

by the individual-level model (5). If one refers to this model, under its assumptions on

intraindividual variability, standard sampling theory for least squares or maximum likelihood

methods for obtaining γ̂i yields that conditional on Ei,φi,θi, if the ni are sufficiently large,

γ̂i |Ei,φi,θi
·

∼ N (γi,C i), for each i = 1, . . . , N, (26)

where “
·

∼” means “approximately distributed as.” (26) says that, treating E i,φi,θi as fixed,

γ̂i has a p-variate normal sampling distribution whose sampling variability is approximated

by the covariance matrix C i, which in general depends on Ei,φi,θi as well as σ. One may

substitute γ̂i and an estimate for σ in C i to obtain Ĉi and the further approximation

γ̂i |Ei,φi,θi
·

∼ N (γi, Ĉi), i = 1, . . . , N. (27)

(27) thus takes into account, albeit approximately, the effects of intraindividual variability

as represented in (5). To estimate µ and Σ, (5) is then combined with the population model

(6), expressed in the form (23). It may be shown that, together, (27) and (23) imply

γ̂i |Ei,φi
·

∼ N (µ,Σ + Ĉi), i = 1, . . . , N ; (28)

note that θi has been “integrated out,” so that (28) conditions on just E i,φi as for the full

likelihood analysis based on (25). Estimation of µ and Σ proceeds by fitting the approximate
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“statistical model” (28) to the “data” (γ̂i, Ĉi), i = 1, . . . , N , by maximum likelihood. Prac-

tical implementation is discussed in Davidian and Giltinan (1995, Ch. 5; 2003, sec. 5.4.2);

Steimer et al. (1984) referred to one way to do this as the “Global Two-Stage” method. An

approximate normal sampling distribution associated with the resulting estimates of µ and

Σ may be obtained in the usual way, pretending that (28) is the “true” statistical model.

This reasoning suggests informally that this approach may be viewed as an attempt to

approximate the integrals in the full-blown likelihood function (25). Intuitively, the use of

the γ̂i as “data” distills the actual data on i down to a summary based on the individual-level

model, which is then combined with the population model; see Davidian Giltinan (2003, sec.

3.2) for more discussion. Thus, two-stage estimation is a valid way to fit the hierarchical

model; in fact, it is approximately equivalent when N and the ni are “large” to the widely

used “first order conditional” method (e.g., Demidenko, 2004, sec. 8.10), discussed next.

5.5 First Order and Related Methods∗

Another class of techniques is based on approximating the likelihood function L(Ω) in (25)

by approximating pi(yi|Ei,φi; σ,µ,Σ), i = 1, . . . , N , directly. Methods in this class are

by far the most popular and widely used for traditional population PK analysis. There are

several ways to justify the two main types of methods; we demonstrate one popular way and

refer the reader to the references at this end of this section for details and other derivations.

Consider for definiteness the stage 1 individual-level model (5). The usual derivation

takes c = 1, so that Y ij in (5) is one-dimensional; i.e., only one concentration is measured

at each tij, but it is easily extended to c > 1, as follows. With the PBPK model expressed
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in terms of γi = log(θi), we can stack up (5) for j = 1, . . . , ni for all cni observations as

Y i =




Y i1

Y i2

...

Y ini




=




f(ti1,Ei,φi,γi) + ei1

f(ti2,Ei,φi,γi) + ei2

...

f(tini
,Ei,φi,γi) + eini




= f i(γi) + ei, (29)

where ei is the random vector of all cni intraindividual deviations and f i(γi) is the vector

of length cni with the PBPK models stacked up and dependence on the tij, Ei, and φi

suppressed for brevity. Following assumptions on the deviations eijk made according to the

considerations in Section 4.3, ei will have a covariance matrix U i(γi,σ), say, summarizing

assumptions made on intraindividual variances for and correlations among all the eijk. If

intraindividual variances are proportional to fk, as discussed after (16), this could depend on

the PK parameters, so we allow dependence of U i on γi to be consistent with the literature.

With representation (29) of the entire intraindividual model, we may now demonstrate

the argument usually attributed to Beal and Sheiner (1982) leading to the so-called “first-

order method” for estimation of Ω. The argument depends on a first-order Taylor series of

the model, and is rather technical; the result of the argument is presented in (32) below.

Let U
1/2
i (γi,σ) be the “square root” matrix of U i(γi,σ) such that U

1/2
i (γi,σ)U

1/2
i (γi,σ)′ =

U i(γi,σ). If εi is a random vector that has a N (0, I) distribution, where I is the identity

matrix with ones on the diagonal and zeroes everywhere else, then ei can be written equiv-

alently as ei = U
1/2
i (γi,σ)εi and (29) can be written as

Y i = f i(γi) + U
1/2
i (γi,σ)εi = f i(µ + bi) + U

1/2
i (µ + bi,σ)εi. (30)

Following the literature, in the second part of (30), we have replaced γ i = log(θi) with its

equivalent representation γ i = µ + bi as in (18), with bi ∼ N (0,Σ). Taking a linear Taylor
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series of this expression about bi = 0, its mean, in both terms that involve bi and ignoring

the term depending on the “cross-product” biεi yields

Y i ≈ f i(µ) + Z i(µ)bi + U
1/2
i (µ,σ)εi, (31)

where Z i is the matrix whose elements are partial derivatives of the components of f i(γi)

with respect to γi. Note that both bi and εi are normally distributed random vectors with

mean 0 that are involved in (31) in an simple additive, linear way, which leads to the resulting

approximation for pi(yi|Ei,φi; σ,µ,Σ).

The upshot of the argument is that Y i conditional on Ei,φi has approximately a cni-

variate normal probability distribution with mean and covariance matrix

f i(µ) and Z i(µ)ΣZ i(µ) + U i(µ,σ). (32)

This implies that we may approximate pi(yi|Ei,φi; σ,µ,Σ) by the normal probability den-

sity with mean and covariance matrix (32), thereby circumventing the integrals in (25). The

“first order” method of estimating Ω substitutes this approximation in the first expression

for L(Ω) in (25), and Ω is then estimated by maximizing this “approximate likelihood.” This

method gained widespread popularity in the 1980s among pharmacokineticists through its

implementation in the software package nonmem (http://www.globomaxservice.com/nonmem.htm),

which includes a numerical differential equation solver. Other software, such as the SAS pro-

cedure nlmixed, also implements this method. A related fitting method is available in the

SAS macro nlinmix available at http://support.sas.com. Galecki (1998) developed a SAS

program called nlmem that merges a differential equation solver with the nlinmix macro to

fit models for which fk are not analytically tractable.

Although this method historically generated considerable excitement, inspection of (32)

reveals a drawback. The probability distribution pi(yi|Ei,φi; σ,µ,Σ) describes how the
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data arise “on average” across individuals, because the individual PK parameters γ i have

been “integrated out.” Thus, the mean vector for pi(yi|Ei,φi; σ,µ,Σ) has the interpretation

as “the average of individual concentration profiles across the population.” As we cautioned

against in Section 5.1, this method approximates this average by the “inherent concentration

profile corresponding to an individual who has the average value µ of the log PK parameters

in the population.” As we discussed, these two quantities are not at all the same, raising

legitimate concern that the resulting estimate for µ will be flawed.

A second class of approaches is based on a better approximation to “the average of

individual concentration profiles across the population,” which is given in (33) below. The

poor approximation of the first order method arises because the Taylor series (30) is taken

in bi about its mean 0, which is rather crude. A better approximation is obtained by

taking the Taylor series about something “closer” to bi. A natural contender is the so-called

empirical Bayes “estimate” of bi, b̂i, say, discussed in Section 5.11, which can be derived

straightforwardly from the hierarchical model and depends on the data and value of Ω.

Assuming availability of b̂i, a linear Taylor series in (30) about bi = b̂i leads to approximating

pi(yi|Ei,φi; σ,µ,Σ) by a cni-variate normal density with mean and covariance matrix

f i(µ + b̂i) − Zi(µ + b̂i)b̂i and Zi(µ + b̂i)ΣZi(µ + b̂i) + U i(µ + b̂i,σ). (33)

To maximize (25) with this normal density substituted for pi(yi|Ei,φi; σ,µ,Σ), popular

implementations iterate between (i) updating b̂i for each i = 1, . . . , N with Ω held fixed at

a current estimate and (ii) obtaining the next current estimate of Ω by maximizing (25) in

Ω holding the b̂i, i = 1, . . . , N , fixed at their values from (i). This approach goes by various

names; we call it the “first-order conditional” method consistent with how it is referred to

in the nonmem software. There are variations on this theme in various software packages,
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including nonmem, the SAS procedure nlmixed, the SAS macros nlinmix and nlmem, and the

R suite of functions nlme (Pinheiro and Bates, 2000); a version of the latter with a built-in

differential equation solver, nlmeode, is also available.

For either the first order or first order conditional methods, the sampling distribution

associated with the estimates of µ and Σ is obtained by acting as if the approximate likeli-

hood is the “true” likelihood. This gives an approximate normal sampling distribution, from

which standard errors may be obtained in the usual way. Empirical studies have shown that

estimates of uncertainty based on this approximate sampling distribution are very reliable

in general as long as N is not too small.

There is an extensive literature on methods based on such approximations; see Beal and

Sheiner (1982), Lindstrom and Bates (1990), Vonesh and Carter (1992), Wolfinger (1993),

Davidian and Giltinan (1995, Ch. 6; 2003, sec. 3.3), Pinheiro and Bates (1995); Vonesh

(1996), Vonesh and Chinchilli (1997), Wolfinger and Lin (1997), among many others. There

are also many other software packages implementing these methods, many dedicated to PK

analysis, such as winnonmix (http://www.pharsight.com/products/prod winnonmix home.php).

5.6 “Direct” Maximization of the Likelihood∗

The methods in the previous two sections are based on analytical manipulations to approxi-

mate the likelihood (25) so as to avoid the integrations involved. As mentioned at the outset,

it is of course possible to use numerical approximations to the integrals instead, which is

often referred to as a “direct” or “exact” method by practitioners, although it still involves a

(numerical) approximation. There are software packages that implement variations on this

theme, including the SAS procedure nlmixed, usc*pack (Jellife, et al., 1996), and monolix

(http://www.math.u-psud.fr/ lavielle/monolix/logiciels). As noted earlier, this can
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be computationally demanding when the dimension p of γ i is large.

5.7 Remarks on Practical Implementation

An important consideration for population analysis using any of the methods discussed so far

is that it is hard. The likelihood function L(Ω) (25) or even approximations to it for a typical

PK population model is a complicated, highly nonlinear function of the parameters Ω. Thus,

it can be challenging to maximize, and good starting values for the optimization routines

used are essential. This is especially true when the dimension p of the unknown θi is large, as

is typical for PBPK models, because, even if the integrals are circumvented analytically, the

number of components in Ω that must be estimated is also large. A further problem in this

case that measurements on only a few accessible concentrations may not contain sufficient

information to achieve structural identification; i.e., to identify the behavior of some of the

numerous PK parameters in the PBPK model, particularly those in deeper compartments.

Accordingly, the data may not have the requisite information to identify the population mean

and variance associated with some of these PK parameters. This makes it tempting to set

the corresponding elements of θi equal to the same, known value derived from the literature

for all individuals, as discussed at the end of Section 5.1 in order reduce the dimension of

what has to be estimated so as to “make it work.”

It should be obvious at this point that this last practice, which is often followed in the

analysis of individual data using PBPK models, is dangerous if our goal is to learn realistically

about interindividual variability in PK in the population. From a biological perspective, the

idea that some PK parameters vary in the population while others are exactly the same for

everyone is ludicrous indeed, but this is precisely what this practice assumes. Intuitively,

assessment of the variability across, and even the population means values of, the remaining
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PK parameters that are not fixed in this way will be flawed if the variability of others that

really do vary in the population is artificially set to zero, because the contributions to the

overall variability in the data by the latter are not properly acknowledged. As remarked

earlier, adopting simplifying assumptions solely to facilitate fitting of the model is not good

analysis practice and can lead to misleading results.

Of course, if there is little information in data on some of the PK parameters and hence

the components of µ and Σ corresponding to them, it is not satisfying to abandon any

attempt at analysis, either. A compromise that is sometimes used in traditional population

analysis is to set the components of µ corresponding to such parameters to a fixed literature

value, but to still allow variability in the parameter across the population. The Bayesian

approach, discussed next, offers a possibly better way of handling this difficulty in some

circumstances. However, it is important to recognize that Bayesian inference it is not a

completely “magic bullet,” either, as we will remark shortly.

5.8 Bayesian Inference

So far, the methods we have discussed are based, through approximations of various kinds,

on classical maximum likelihood, with uncertainty quantified by approximate (normal) sam-

pling distributions derived from large sample theory. The Bayesian approach to statistical

inference is based on an alternative point of view to the repeated-sampling-based, frequen-

tist perspective on uncertainty, although under certain conditions the two approaches can be

reconciled. There are several features of the Bayesian framework that make it an attractive

basis for population analysis with PBPK models, which explains the upsurge of interest in

this approach. Key among these is that the Bayesian paradigm provides an explicit mecha-

nism for introducing outside information, e.g., based on previous studies carried out by the
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analyst or reported in the literature, or even “educated guesses,” into an analysis, which has

special appeal. However, there are also potential pitfalls that must be appreciated.

Technically, the Bayesian approach to inference does not distinguish between “random

vectors” that represent data that might be collected or unknown, unobservable quantities

like θi (or γi) and “parameters” such as the population parameters µ and Σ whose values

are to be estimated; all model components are considered “random” in that they are taken

to have probability distributions. Of course, in a population modeling and analysis context,

as alluded to throughout and noted explicitly in Section 4.8, we certainly believe that there

are fixed, true values of quantities like µ and Σ describing the population in which we are

interested, so it might seem confusing to think that µ and Σ would have probability distri-

butions of possible values! This is reconciled by the view that the Bayesian approach takes

on probability: “probability” is viewed as a measure of uncertainty. Thus, for our purposes,

probability distributions associated with population parameters, for example, may be inter-

preted as expressing the degrees of uncertainty about their (fixed) values. A comprehensive

reference on Bayesian inference explicating this view is Gelman et al. (2004).

How does this work? The ingredients of a Bayesian analysis follow from Bayes rule. We

first demonstrate in a generic situation where we have a statistical model depending on a

random variable Y , say, representing “data” that might be collected and a parameter µ,

say, perhaps representing the mean of all possible values Y could take on. If we view µ as

a “random variable,” too, we may envision the joint probability density of Y and µ that

describes the probabilities with which they take on their values together, which we write as

p(y, µ) and that by standard results factors as

p(y, µ) = p(y|µ)p(µ). (34)
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In (34), p(y|µ) is the (conditional) probability density of Y treating µ as fixed, which thus

describes how the data would take on their values when the mean of their possible values

is fixed at µ. That is, p(y|µ) represents our belief in how the data take on their values, as

we ordinarily specify in a statistical model. The probability density p(µ) is called the prior

density. The prior may be thought of as specifying our belief, or uncertainty, about the value

of µ in the absence of information from the data Y . If p(µ) is very spread out, this indicates

that, before we have seen the data, we are pretty uncertain about what the value of µ might

be. If p(µ) is concentrated around a particular value, this reflects that we are fairly certain

what the value of µ is before we have even collected data. Bayes rule provides a mechanism

for “updating” our assessment of this uncertainty once we have seen data. Define p(µ|y)

to be the probability density that reexpresses our uncertainty given that we have now seen

actual data whose value turned out to be y. Bayes rule states that

p(µ|y) =
p(y|µ)p(µ)

p(y)
, p(y) =

∫
p(y|µ) p(µ)dµ). (35)

In (35), p(µ|y) is called the posterior density, with the above interpretation. The posterior

consequently is the fundamental object by which uncertainty about the parameter µ is

summarized following the observation of data. The goal of a data analysis is hence to

obtain the posterior for quantities of interest like µ, where a prior for µ has been specified.

Note that (35) involves the need to evaluate an integral. In complex statistical models

like the hierarchical model (5)-(6), the forms of the posteriors for parameters like µ and

Σ are complicated, involving numerous high-dimensional integrals; readers wishing to see a

technical demonstration should read Section 5.9. The need to carry out complex integrations

like these in useful but complex statistical models was a major roadblock to the widespread

application of Bayesian methods until the advent of modern computing power and advances
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in Markov chain Monte Carlo (MCMC) techniques made it possible to “do” such integration

by simulation numerically. MCMC methods are a body of numerical simulation techniques

that have many uses, not limited to the implementation of Bayesian inference, although

it is for this purpose that they have enjoyed great recent popularity. It is important to

recognize that MCMC methods are simply a computational device that proves convenient

for calculating posteriors and thus operationalizing Bayesian inference. As such, they are

not themselves a “statistical method.” Readers desiring an overview of how MCMC methods

work in the context of population analysis should read Section 5.9.

5.9 Population Analysis in a Bayesian Framework∗

We demonstrate how Bayesian inference is operationalized for population analysis under the

hierarchical model (5)-(6) (or equivalently (18)). From the Bayesian perspective, all of the

potential data vectors Y i, i = 1, . . . , N ; the unobserved log PK parameters γ i = log(θi), i =

1, . . . , N ; the population parameters µ and Σ; and the additional intraindividual variability

parameters σ are viewed as random vectors with probability distributions. As in the classical

analyses discussed previously, we view the collection of observed E i,φi, i = 1, . . . , N , as fixed

and known for the purposes of analysis (so condition on their observed values throughout).

Our goal is to obtain suitable posterior densities for the quantities µ,Σ,σ,γ i, i = 1, . . . , N ,

given we have observed actual data yi along with the fixed Ei,φi, i = 1, . . . , N .

To implement the Bayesian machinery to this end, we must specify a prior distribution

for the parameters Ω = (µ,Σ,σ), which is often called a “hyperprior” in the context of

population analysis; we denote the prior as p(Ω) = p(µ,Σ,σ) here. There is no “prior” per

se attached to the γi, i = 1, . . . , N ; as specified in the hierarchical model, the γ i are taken

to follow the population model (18). In some Bayesian analyses, the probability distribution
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dictated by the population model is sometimes also called a “prior,” but we refrain from this

terminology in order to maintain the view of the hierarchical model that this distribution

dictates how individuals in the population arise regardless of the type of analysis (Bayesian

or classical) undertaken, so is part of the “data generating” model. Writing for short γ =

{γi, i = 1, . . . , N}, y = {yi, i = 1, . . . , N}, and (E,φ) = {(Ei,φi), i = 1, . . . , N}, it may

be shown that the joint posterior density of all of µ,Σ,σ,γ i, i = 1, . . . , N is given by

p(µ,Σ,σ,γ|y,E,φ) =

N∏

i=1

p(yi|Ei,φi; γi; σ) ϕ(γi; µ,Σ) p(µ,Σ,σ)

∫ ∫ ∫ ∫ N∏

i=1

p(yi|Ei,φi; γi; σ) ϕ(γi; µ,Σ) p(µ,Σ,σ) dγdµ dΣ dσ

.

(36)

Comparing to (35), note that the probability densities corresponding to the intra- and in-

terindividual components of the hierarchical model appear in the position corresponding to

our belief on how the data arise, as expected.

The posterior density (36) is the joint posterior density of all of µ,Σ,σ,γ i, i = 1, . . . , N .

Conventionally, assessment of uncertainty for particular parameters, such as µ is made by

examining the posterior density for that parameter alone. Operationally, to obtain the

individual posterior density of µ given the data y and (E,φ), p(µ |y,E,φ), say, we must

integrate (36) with respect to Σ, σ, and γ; i.e., we need to calculate

p(µ |y,E,φ) =

∫ ∫ ∫ N∏

i=1

p(yi|Ei,φi; γi; σ) ϕ(γi; µ,Σ) p(µ,Σ,σ) dγ dΣ dσ

∫ ∫ ∫ ∫ N∏

i=1

p(yi|Ei,φi; γi; σ) ϕ(γi; µ,Σ) p(µ,Σ,σ) dγdµ dΣ dσ

. (37)

Clearly this is a monumental task that cannot be done analytically! Nonetheless, in principle

if we could obtain the form of the posterior density p(µ |y,E,φ), we would have a complete

picture of uncertainty about the value of the population parameter µ (and similarly for
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Σ and σ). The modal value, mean, or median value of the posterior is usually reported

as the “estimate” of the parameter. The standard deviation of the posterior is reported

when a single numerical measure of uncertainty is desired. It is important to recognize that

uncertainty here is in the sense described above and hence has a different interpretation from

the sampling-based measures used classically (but see below).

As noted in Section 5.8, these complex integrations may be implemented numerically

by using MCMC techniques. A complete description of how MCMC methods work in the

context of implementing Bayesian population PK analysis is beyond our scope here, and we

refer the reader to accounts by Wakefield et al. (1994), Davidian and Giltinan (1995, Ch. 8),

Bennett et al. (1996), Bernillon and Bois (2000), and Gelman et al. (2004, Ch. 11) for some

of the nuts and bolts issues and to Rosner and Müller (1994), Bois et al. (1996), Gelman

et al. (1996), Wakefield (1996), Müller and Rosner (1997), Jonsson and Johanson (2001ab),

Jonsson et al. (2001), Jonsson and Johanson (2002), and Mezzetti et al. (2003) for accounts

of population analyses. A brief description is as follows.

The end product of implementation of Bayesian population analysis by using MCMC

methods to perform the integrations are large samples of values of µ, Σ, σ, and γ i, i =

1, . . . , N , simulated from their joint posterior. Using these samples, one may construct

numerically any feature of the posterior one desires. For example, the sample of µ values

represents a sample of possible values arising from the posterior density p(µ|y,E,φ) in (37),

and a visual estimate of this can be obtained by, e.g., plotting a histogram for the sample.

The Bayesian “estimate” of µ can be found as the mean, median, or mode of the the values,

and a numerical summary of the uncertainty in it can be obtained as their standard deviation.

Because samples from the joint posterior (36 are in fact obtained, information on the joint

uncertainty (e.g., the extent to which uncertainty about µ is associated with that about Σ)
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is available.

These samples are obtained by an iterative scheme that produces a simulated sequence

of values of all of µ, Σ, σ, and γ i, i = 1, . . . , N , such that the sequence forms a Markov

chain that, technically speaking, has stationary distribution that is the same as the joint

posterior of interest ((36) here). After a sufficient number of iterations to ensure that this

property is realized, the values in the sequences may be viewed as samples from the posterior.

Details of how to decide what constitutes a “sufficient number,” how to construct the values

in the sequence using techniques like the Metropolis and Metropolis-Hasting algorithms are

reviewed in the references cited above.

Software to carry out these calculations is available. An add-on to the popular package

bugs (Bayesian inference Using Gibbs Sampling) called pkbugs (PKBugs, 2004) has been

developed for fitting population PK models with a focus on those relevant to pharmaceutical

studies. The package MCSim (Bois et al., 2003) is tailored to fitting population PBPK models,

and includes an differential equation solver. MCSim has been used in a number of published

population analyses with success (e.g., Jonsson and Johanson; 2001ab; Jonsson et al., 2001;

Jonsson and Johanson, 2002).

5.10 Contrasting Bayesian and Classical Methods

We now are in a position to comment on some of the advantages of the Bayesian approach

as well as some of the potential pitfalls. A comprehensive discussion is clearly not possible

here, so we touch only on a few key points.

The prior distribution represents a natural mechanism for incorporating information on

the values of population and other parameters available in the literature or in previously

collected data. The prior can also be used to impose constraints that force the values of
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parameters like µ to stay in biologically plausible ranges through choices of priors that do

not include values outside these ranges as possibilities (thus representing perfect certainty

that they do not fall outside these ranges). When little information is available, prior dis-

tributions that are “flat” are often used. In fact, if the prior contains no information (so

we are “infinitely uncertain” a priori about plausible values for the parameters), the poste-

rior will be proportional to the data generating model that defines the likelihood, Bayesian

and likelihood analyses will be approximately equivalent, and the classical sampling dis-

tribution associated with a likelihood-based estimate and the posterior will coincide (i.e.,

will be approximate normal distributions; see Gelman et al., 2004, Ch. 4). When there

is prior information available, the shape and extent of spread in the prior may be chosen

to reflect what is known from the literature or previous experiments about parameters in

what are called “informative” priors. The shape of the resulting posterior will be dictated

by the merging of the prior and data. Commonly, priors are specified separately for each

parameter, partly because it may come from different sources and partly for simplicity of im-

plementation. Formally, this treats the prior information on each parameter as statistically

independent, and means that the prior for population analysis is specified as the product

p(Ω) = p(µ)P (Σ)p(σ).

A routine criticism of Bayesian analysis in general is in regard to the choice of the prior.

When the prior is chosen for “convenience” because it simplifies computations or makes some

calculations analytically tractable, such criticism can be justified. To deflect this criticism, it

is essential that priors be constructed faithfully using the best scientific information available.

Why is there concern about choice of prior? Because the posterior that is the central tool for

inference depends on the prior, it is fair to be concerned that the results (inferences based on

the posterior) may be sensitive to how the prior was chosen. Two different priors can lead
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to different posteriors and hence to possibly different conclusions. When the goal is to make

policy recommendations, this is less than desirable. Thus, any Bayesian analysis should

include an investigation of such sensitivity, as discussed in the aforementioned references.

Just as with the classical approaches to population analysis, implementation of the

Bayesian approach can be computationally challenging and intensive, and there is no guar-

antee that the sequence of simulated values will exhibit good behavior; e.g., the sequence

should “stabilize” or converge to produce values that are consistent with the true posterior

density. In some circumstances, such convergence can be very slow or elusive and needs to be

monitored carefully using diagnostic procedures that have been developed for this purpose.

Some analysts will run separate sequences and inspect the results for comparability of the

resulting simulated posteriors. Thus, recalling Section 5.7, computational hurdles arise in

population analysis regardless of the statistical inferential approach, and the analyst must

be prepared to inspect carefully the results rather than adopting them readily.

A source of tension between adherents to the classical frequentist and Bayesian ap-

proaches is in regard to the role of data in inferences. In the frequentist approach, the

process by which the data arise, including the sample sizes chosen when conducting an ex-

periment, are central to drawing conclusions and defining and quantifying uncertainty, and

uncertainty will be large and the entire exercise infeasible when there are little data or little

information in them. In the Bayesian approach, the data are only part of the picture, and

this has led some to argue that large sample sizes are somehow not necessary for Bayesian

analysis. However, with little data (or data that carry little information), a posterior can

still be obtained, and its form in this case will be dictated largely by the form of the prior,

which opens the possibility for inferences and uncertainty evaluations that may be almost

entirely predicated on the prior if it is constructed to be “informative.” This reinforces the
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concern about choice of the prior, particularly when it is specified based on summary mea-

sures in the literature from narrowly defined populations or by extrapolation from animal

experiments. Some frequentists argue that when historical data are used to construct priors,

an alternative to a Bayesian analysis is to include these historical data with those from the

current experiment and to develop an overall statistical model for how all of them arise.

They also note that it is possible to impose constraints on parameter values, in an albeit

different way, in classical likelihood-based analyses.

There is no easy resolution to this debate! Most pragmatic analysts agree that, as long

as its scope and limitations are appreciated, the Bayesian approach is natural in the context

of population analysis. In practice, the debate may be somewhat moot; when the data

contain “good” information, the results of classical and Bayesian analyses are often closely

aligned; compare Davidian and Gallant (1992) and Wakefield (1996), which report classical

and Bayesian population analyses of a PK study of the anti-arrhythmic drug quinidine.

5.11 Estimation of Individual PK Parameters∗

As noted previously, the main focus of population analysis is on the population, not on

specific individuals. However, there may be situations where inference on PK parameters

for individuals in a study is desired. “Estimates” of the PK parameters γ i or equivalently

θi for specific individuals i may be obtained from any of the methods we have discussed.

From the Bayesian approach, these arise naturally. A posterior for each of the γ i, i =

1, . . . , N , is the probability density

p(γi|y,E,φ), i = 1, . . . , N. (38)

Samples from the posteriors (38) are a byproduct of the analysis implemented by MCMC
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simulation. Thus, means (or medians or modes) of these may be used as “estimates” of the

γi, and their histogram and other summaries (e.g. standard deviations) quantify uncertainty.

In the classical approach, because the γ i are regarded as random vectors, so on a footing

different from that of the fixed population parameters, use of the term “estimate” is consid-

ered misplaced, and often the term “predictor” is used instead. It may be argued from this

perspective that in fact a “reasonable” such predictor is a so-called empirical Bayes estimate;

a simple version of the argument is given in Davidian and Giltinan (1995, Ch. 3), and a

general discussion of the idea of empirical Bayes inference is discussed by Carlin and Louis

(2000). The posterior (38), similar to (37), is the probability density found by integrating

the joint posterior with respect to all of µ, Σ, σ, and the other γk, i 6= i, so cannot be

found analytically. However, if one treats µ,Σ,σ as known constants, one can write down

a posterior density of γ i for individual i of the form

p(|γi|yi,Ei,φi; µ,Σ,σ), (39)

which depends on the parameters µ,Σ,σ (not “integrated out”). The empirical Bayes

approach uses a density like (39) as the basis for inference on random vectors like γ i in the

hierarchical models. Because (39) depends on Ω = (µ,Σ,σ), an estimate of Ω is substituted

in (39). The mode of (39); i.e., the value of γ i maximizing (39), is then given as the predictor

or “estimate.” The term “empirical Bayes” is thus used to emphasize that, while this has

a Bayesian flavor, “empirical” estimates of Ω are substituted rather than being “integrated

out” as in the fully Bayesian approach.

Because bi = γi − µ from (18), equivalently, one may find an empirical Bayes estimate

for bi, which is used in the “first order conditional” method, as discussed in Section 5.5.
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6 Implications and Extensions

6.1 Extensions

Our presentation has been in terms of a specific version of the hierarchical statistical model

that forms the basis for population PK analysis assuming that the data are in a certain form

where c different concentrations are measured on each individual i at the same time points tij,

j = 1, . . . , ni. This situation was chosen to provide a concrete basis for describing the critical

features of intraindividual and interindividual that must be considered in specifying the

statistical model, but it does not mean that the model cannot be extended and generalized to

other settings. We have already remarked (Section 5.1) that the basic hierarchical structure

At the end of Section 4.6, we mentioned one such extension, that of including individual

attributes in the population model to take into possible account and uncover their systematic

associations with PK parameters in the population. It is also possible to allow the time points

at which each of the c concentrations are measured on each individual to be different, as, for

example, it may be logistically difficult to collect both blood and breath samples according

to the same schedule. The same considerations on intraindividual correlation discussed in

Sections 4.2–4.4 would of course apply.

Another important extension of the hierarchical model is to this situation where the same

individuals may be observed on more than one “occasion,” e.g., where each is exposed to

three different concentrations of a hazard agent in three different exposure chamber episodes

separated by suitable washout periods, and longitudinal concentration measurements are

taken for each. Although the same PBPK model is good approximation to the PK behavior

across all these occasions, it is plausible that the PK parameters describing this behavior

may vary somewhat within the same individual over time, reflecting natural physiological
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variation. In this case, letting ` index the occasion, the model may be extended to allow

PK parameters θi`, say, for each occasion within individual i. Karlsson and Sheiner (1993)

discuss modeling considerations for this situation.

In some instances, only aggregated data may be available, as discussed in Section 5.1,

and the objective is to estimate population parameters on their basis. We noted in that

section and reiterate here that, even though the data that are available are aggregated, the

process by which such aggregated values arise still ultimately is represented by the hierar-

chical statistical model. In particular, the concentration measurements for each individual

i that have been aggregated may be thought to arise for each individual according to this

hierarchy, where individual i’s concentration measurements are governed by his/her φi and

θi values. Accordingly, we emphasize again that valid estimation of population parameters

based on aggregated data should be based on methods obtained by assuming that individual

concentration measurements arise according to the hierarchical model. As suggested in Sec-

tion 5.1, this would involve developing a model for aggregated data based on the hierarchical

model. For example, suppose that concentration measurements for the kth compartment for

i = 1, . . . , N individuals have been summarized at each of n (common) times tj, j = 1, . . . , n,

by the sample average and standard deviation across N . At the jth time, this means that

the available “data” are the sample average and standard deviation of the Yijk, given by

mjk = N−1

N∑

i=1

Yijk, sjk =

{
(N − 1)−1

N∑

i=1

(Yijk − mjk)
2

}1/2

; (40)

the Yijk themselves are not observed. More precisely, then, the task would be to derive based

on the hierarchical model for the Yijk a corresponding model for the probability distributions

describing how mjk and sjk would take on their values. Given the complexity of the hier-

archical model, this may be analytically and computationally challenging. Well-performing
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methods for this problem need to be developed.

Another common challenge in PBPK analysis is that (individual or aggregated) data

from different sources may be available, and each data source contains information on dif-

ferent aspects of the kinetics. For example, one data set may involve measured intravenous

concentrations that contain information on metabolic parameters, while another may be

suitable for estimation of absorption characteristics. It is natural to attempt to estimate

population parameters on which each data set has information separately by data set and

then combining the estimates post hoc. This practice ignores the possibility that there may

be information on other aspects, such as intraindividual variability and other PBPK param-

eters in some or all available data sets that might be exploited. As for aggregated data, a

fruitful approach under these conditions may be to use the hierarchical model as a starting

point for describing how data in the various studies arise and then to combine them in an

overarching, “meta-analytic” statistical model framework that acknowledges explicitly the

different data sources. Wakefield and Rahman (2000) discuss this approach in the context of

population analysis for pharmaceutical agents. Further research on such methods for PBPK

analysis, which involves additional challenges, is needed.

Any population analysis will only be as reliable as the mechanistic PBPK model and

hierarchical statistical model in which is it is embedded. It is natural for an analyst to ask

“what did I assume, and what if I am wrong?” As noted in Section 4.5, the overall statisti-

cal model may be inappropriate because of misspecification of the PK model, inappropriate

assumptions on intra- and interindividual variability, or both. Thus, there is great interest

in tools for assessing the suitability of the model components. Several popular techniques for

this purpose are available. One widely-used method is to inspect some sort of information

criterion, which may be thought of roughly as an objective measure of overall model fit
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adjusted to take into account the number of quantities estimated. One may fit several com-

peting models that differ in regard to, say, the mechanistic model embedded or complexity of

assumptions on intraindividual variability. The model fit yielding the most favorable value

of the information criterion might be judged the “best;” however, there are some caveats.

We have already noted the difficulty of distinguishing between a poorly chosen PK model

and unsuitable statistical assumptions, e.g., on intraindividual correlation. Because infor-

mation criteria can only judge the “overall fit,” it is impossible without further scientific

assumptions to identify a “best” mechanistic model or “best” set of intraindividual variabil-

ity assumptions because of the way these features are “tangled up” together, as described

in Section 4.5. Thus, it may be difficult to use such measures to identify an appropriate

PBPK model. Given one is willing to assume, for example, that the chosen PBPK model is

reasonable, then, fixing this model, one may investigate the statistical modeling assumptions

using information criteria as well as diagnostic plots and other measures, some of which are

mentioned in (4.3. This often involves some subjectivity interpreting graphical displays, and

conclusions can be unduly influenced by features like “unusual” concentration measurements

or “outlying” individuals who do not seem to be consistent with the others. In many cases,

settling on an an appropriate overall model is a bit of an “art form.” Continued research

into methods for model selection and diagnosis in the context of population PBPK analysis

is welcome.

Our presentation has followed standard accounts in the literature, which treat the phys-

iological measurements φi fixed quantities for the i individuals and carry out the analysis

conditional on their values for the N sampled in individuals for the purpose of characterizing

the distribution of unknown PK parameters (θi). Of course, the φ also are distributed in,

and hence vary in, the population; e.g., body weight, lean body mass, and so on clearly
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exhibit variability across individuals. If the model is to be used to simulate individuals in

the population, as described in the next section, it is important that the distribution of the

physiological measures also be characterized. In fact, ideally, the entire joint distribution of

the φ and θi would be required. See Mentré and Mallet (1994), Rosner and Müller (1994),

and Müller and Rosner (1997).

6.2 Further Analyses

Our presentation to this point has focused on methods for and issues associated with fitting

the hierarchical statistical framework embedding a PBPK model to data, referred to as

population analysis. Although the results of a fit, such as estimates of population parameters

and estimates of uncertainty for them, are useful and important in their own right, generally

they are not the ultimate objective of a population analysis. Indeed, as we noted at the

outset, the goal is usually to exploit the fitted model as a basis for further analyses. We now

make some brief comments on issues that must be appreciated in this endeavor.

One important goal for risk assessment is to understand the relationship between deliv-

ered dose, i.e., concentration of the agent in target tissue, and some outcome or response.

As a first step, it is important to understand the nature of the concentrations that might be

seen in the population under a particular exposure level/pattern, in particular, the variabil-

ity in delivered doses that might be expected if all individuals were subjected to the same

exposure. Intuitively, variability in PK parameters across the population will dictate vari-

ability in achieved target tissue concentrations. Thus, a fitted hierarchical model embedding

a PBPK model for the agent can form the basis for such an investigation. The population

model (6) characterizes PK parameter population variability. Armed with this and a distri-

bution of physiological parameters for the population, one may use Monte Carlo simulation
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to draw “virtual” individuals from the population and via the PBPK model to obtain the

“inherent” delivered doses dictated by each. A histogram of the resulting simulated delivered

doses would provide an empirical view of the population variability in concentrations. Note

that Monte Carlo simulation in this context simply refers to making random draws from a

probability distribution and is distinct from MCMC techniques for fitting the model.

Note that any subsequent analysis involving estimates of the population parameters will

be subject to uncertainty, just as are the estimates of these parameters themselves. Once the

parameter estimates are obtained, they cannot be regarded as known fixed quantities; rather

it must be appreciated that the uncertainty associated with them will propagate through to

the conclusions of any further analyses based on them. Thus, the aforementioned simulation

is in fact subject to uncertainty, because the simulated delivered doses are based on the

population estimates.

7 Concluding Remarks

In this article, we have tried to give a systematic and detailed account of the formulation

of the statistical model framework underlying population analysis and of some the methods

that have historically and more recently been used for its implementation. Of necessity,

we have not touched on numerous important issues, nor have we been able to provide a

comprehensive review of all methods, model extensions, and so on that are possible. We

refer the reader to the references for more details. The bibliography for population PK

analysis we provide in this article is in no way exhaustive, and we encourage the interested

reader to seek out further references, as new advances continue to emerge.

Clearly, there are many open problems in population analysis using PBPK analysis still

to be resolved, and we look forward to continued research and advances in this area.

76



Acknowledgments

This work was supported in part by NIH grants R01-CA085848 and R37-AI031789. The

author gratefully acknowledges the excellent suggestions of A. John Bailer, Weihsueh Chiu,

and Woodrow Setzer in preparing this article.

Population PK analysis using hierarchical nonlinear models was pioneered by Lewis B.

Sheiner (1940-2004) and Stuart L. Beal (1941-2006).

References

Beal, S.L. and Sheiner, L.B. (1982). Estimating population pharmacokinetics. CRC Critical

Reviews in Biomedical Engineering 8, 195–222.

Bennett, J.E., Racine-Poon, A., and Wakefield, J.C. (1996). MCMC for nonlinear hierarchi-

cal models. In Markov Chain Monte Carlo in Practice, ed. W.R. Gilks, S. Richardson,

and D.J. Spiegelhalter. New York: Chapman and Hall/CRC Press.

Bernillon, P. and Bois, F.Y. (2000). Statistical issues in toxicokinetic modeling: A Bayesian

perspective. Environmental Health Perspectives 108(Suppl), S883–893.

Bois, F.Y., Gelman, A., Jiang, J., Maszle, D., Zeise, L., and Alexeef, G. (1996). Population

toxicokinetics of tetrachloroethylene. Archives of Toxicology 70, 347–355.

Bois, F.Y., Jackson, E.T., Pekari, K., and Smith, M.T. (1998). Population toxicokinetics of

benzene. Environmental Health Perspectives Supplements 104, 1405–1411.

Bois, F.Y., Maszle, D.R., Revzan, K., Tiller, S., and Yuan, Z. (2003). MCSim: a Monte

Carlo Simulation Program, version 5.0.0, available at

http://toxi.ineris.fr/activites/toxicologie quantitative/mcsim/mcsim.php

Carlin, B.P. and Louis, T.A. (2000). Bayes and Empirical Bayes Methods for Data Analysis,

Second Edition. Boca Raton: Chapman and Hall/CRC Press.

77



Covington, T.R., Gentry, P.R., Van Landingham, C.B., Andersen, M.E., Kester, J.E., and

Clewell, H.J. (2006). The use of Markov chain Monte Carlo uncertainty analysis to

support a Public Health Goal for perchloroethylene. Regulatory Toxicology and Phar-

macology,

doi:10.1016/j.yrtph.2006.06.008.

Davidian, M. and Gallant, A.R. (1992). Smooth nonparametric maximum likelihood es-

timation for population pharmacokinetics, with application to quinidine. Journal of

Pharmacokinetics and Biopharmaceutics 20, 529–556.

Davidian, M. and Giltinan, D. M. (1995).Nonlinear Models for Repeated Measurement Data.

London: Chapman and Hall.

Davidian, M. and Giltinan, D. M. (2003). Nonlinear models for repeated measurement

data: An overview and update. Journal of Agricultural, Biological, and Environmental

Statistics, 8 387–419.

Demidenko, E. (2004). Mixed Models: Theory and Applications. New York: Wiley.

Diggle, P.J., Heagerty, P., Liang, K.-Y., and Zeger, S.L. (2001). Analysis of Longitudinal

Data, Second Edition. Oxford University Press.

Galecki, A.T. (1998). NLMEM: A new SAS/IML macro for hierarchical nonlinear models.

Computer Methods and Programs in Biomedicine 55, 207–216.

Gear, C.W. (1971). The automatic integration of ordinary differential equations. Commu-

nications of the Association for Computing Machinery 14, 176–179.

Gelman, A., Bois, F., and Jiang, J. (1996). Physiological pharmacokinetic analysis using

population modeling and informative prior distributions. Journal of the American Sta-

tistical Association 91, 1400–1412.

78



Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis,

Second Edition. Boca Raton: Chapman and Hall/CRC Press.

Gibaldi, M. and Perrier, D. (1982). Pharmacokinetics (2nd edn). New York: Marcel Dekker.

Giltinan, D.M. (2006). Pharmacokinetics and pharmacodynamics. In Encyclopedia of Bio-

statistics (2nd edn), ed. P. Armitage and T. Colton, 000–000 New York: Wiley. DOI:

10.1002/0470011815.b2a07040.

Hack, C.E., Chiu, W.A., Zhao, Q.J., and Clewell, H.J. (2006). Bayesian population analysis

of a harmonized physiologically based pharmacokinetic model of trichloroethylene and

its metabolites. Regulartory Toxicology and Pharmacology 46. 63–83.

Jellife R.W., Schumitzky, A., van Guilder, M. (eds.) (1996). User Manual for Version

10.6 USC*PACK Collection of PC Programs. Laboratory of Applied Pharmacokinetics,

University of Southern California, Los Angeles, California.

Johanson, G., Jonsson, F., and Bois, F. (1999). Development of a new technique for risk

assessment using physiologically based toxicokinetic models. American Journal of In-

dustrial Medicine, 36S1, 101–103.

Jonsson, F., Bois, F.Y., and Johanson, G.(2001). Assessing the reliability of PBPK models

using data from methylchloride-exposed, non-conjugating human subjects. Archives of

Toxicology 75, 189–199.

Jonsson, F. and Johanson, G. (2001a). A Bayesian analysis of the influence of GSTT1

polymorphism on the cancer risk estimate for dichloromethane. Toxicology and Applied

Pharmacology 174, 99–112.

Jonsson, F. and Johanson, G. (2001b). Bayesian estimation of variability in adipose tis-

sue blood flow in man by physiologically based pharmacokinetic modeling of inhalation

exposure to toluene. Toxicology 157, 177–193.

79



Jonsson, F. and Johanson, G. (2002). Physiologically based modeling of the inhalation

kinetics of styrene in humans using a Bayesian population approach. Toxicology and

Applied Pharmacology 179. 35–49.

Jonsson, F. and Johanson, G. (2003). The Bayesian population approach to physiological

toxicokinetic-toxicodynamic models – An example using the MCSim software. Toxicology

Letters 138, 143–150.

Karlsson, M.O. and Sheiner, L.B. (1993). The importance of modeling inter-occasion vari-

ability in population pharmacokinetic analyses. Journal of Pharmacokinetics and Bio-

pharmaceutics 21, 735–750.

Lindstrom, M.J. and Bates, D.M. (1990). Nonlinear mixed effects models for repeated

measures data. Biometrics 46, 673–687.

Maitre, P.O., Buhrer, M., Thomson, D., and Stanski, D.R. (1991). A three-step approach

combining Bayesian regression and NONMEM population analysis: Application to mi-

dazolam. Journal of Pharmacokinetics and Biopharmaceutics 19, 377–384.

Mallet, A. (1986). A maximum likelihood estimation method for random coefficient regres-

sion models. Biometrika 73, 645–656.

Mandema, J.W., Verotta, D., and Sheiner, L.B. (1992). Building population pharmacoki-

netic/pharmacodynamic models. Journal of Pharmacokinetics and Biopharmaceutics

20, 645–656.

Marino, D.J., Clewell, H.J., Gentry, P.R., Covington, T.R., Hack, C.E., David, R.M., and

Morgott, D.A. (2006). Revised assessment of cancer risk to dicholoromethane: Part I

Bayesian PBPK and dose-response modeling in mice. Regulartory Toxicology and Phar-

macology 45, 44–54.
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Table 1: List of selected symbols. See the text for more detailed descriptions.

Symbol Meaning

i Index identifying individiduals sampled from the population

N Total number of individuals

j Index identifying time points at which compartment-specific

concentrations are measured on the ith individual

ni Number of time points at which concentrations are measured

on individual i

tij The jth time at which concentrations are measured on the

ith individual

k Index identifying the kth compartment on which measured

concentrations are available *

c Number of compartments on which concentrations are measured

at each time tij (c ≤ total number of compartments in the model)

Ei Collection of all information on exposure level and duration experienced

by individual i

Yijk Compartment-specific concentration measurement on compartment k

at time tij on individual i

Y ij Collection of all c compartment-specific concentrations

measured at time tij on individual i

Y i Collection of all compartment-specific concentrations over all times

measured on individual i

φi Collection of physiological measurements on individual i

(known, measured quantity)

θi Collection of all unknown PK parameters (possibly transformed and/or

rescaled) associated with individual i

Ai Collection of measured, known attributes on individual i, such as

gender, ethnicity, genotypic information

fk(t,Ei,φi,θi) Expression for the kth compartment-specific

(mean) concentration at time t found by solving the PBPK equations

under i’s exposure Ei, physiology φi, and PK parameters θi
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Table 1: List of selected symbols, continued. See the text for more detailed descriptions.

Symbol Meaning

f(t,Ei,φi,θi) Collection of expressions for all c compartment-specific (mean)

concentrations for individual i at time t

eijk Deviation representing how measured concentration Yijk differs

from the expected concentration fk(tij,Ei,φi,θi) at

time tij under the PBPK model

eij Collection of deviations associated with all c compartment-

specific concentrations measured at time tij on individual i

µ Collection of population means of each element of the unknown PK

parameters θi across the pouplation of all individuals

(population parameter)

Σ Covariance matrix of the elements of the unknown PK parameters

across the population of all individuals (population parameter)

Σ2
` Variance in the population of individuals of the `th

PK parameter in θi (and `th diagonal element of Σ)

eR,ijk Part of deviation eijk due to varibility of realizations of

the k comparment-specific concentration for individual i

eM,ijk Part of deviation eijk due to measurement (assay) error

for the kth compartment-specific concentration measured on individual i

σ2
R,k Variance associated with variability in realizations of the

k comparment-specific concentration within a single individual

σ2
M,k Variance associated with measurement (assay) error in the

kth compartment-specific concentration

σ2
k Total intra-individual variance in concentration measurements on

the kth compartment-specific concentration
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Figure 1: A very simple PK model: the one-compartment model with first-order absorp-

tion and elimination, often used to represent the time course of concentrations of orally-

administered drugs.
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Figure 2: A typical PBPK model with four compartments.
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Figure 3: Plasma concentration-time profiles for 12 human subjects receiving the same

(scaled to body weight) oral dose of the anti-asthmatic theophylline at time zero.
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Figure 4: Conceptual depiction of intra-individual sources of variation for exhaled air con-

centrations. For individual i, the solid black line is fk(t,Ei,φi,θi), the “inherent trajectory”

for i’s exhaled air concentrations; the solid gray line is a realization of the true exhaled air

concentrations through continuous time; and the solid symbols are intermittent measure-

ments of the realized true concentrations, contaminated by assay measurement error, the

data actually observed.

0 100 200 300 400

0
20

0
40

0
60

0
80

0
10

00
12

00

Time

C
on

ce
nt

ra
tio

n

PSfrag replacements

Falv

Fcard

Fwp

Fpp

Ffat

Fliv

Pblood/air

Vwp,Pwp/blood

Vpp,Ppp/blood

Vfat,Pfat/blood

Vliv,Pliv/blood

Vmax,Km

Cart

Cinh

Cexh

Cven

Cwp

Cpp

Cfat

Cliv

Metabolism

Lungs

Liver

Fat

tissues

Well-perfused

Poorly-perfused

89


